NAVIGATING THE PERFECT STORM
ENABLING THE A.I. ERA

Gary Dickerson
President and CEO, Applied Materials
“Data is to this century what oil was to the last one: a driver of growth and change”

- The Economist
DATA GENERATION

IoT and Industry 4.0 driving an explosion of data

DATA STORAGE

More data needs to be processed and stored - Storage alone is not sufficient or economical

COMPUTE

New compute models to turn data into value

New compute architectures to process data at edge and in cloud at right performance / watt
Explosion of Data Generation

INFLECTION YEAR
Data generated by machines > humans

- **2017**
 - Machines: 1.5ZB (53%)
 - Humans: <10% (44%)

- **2018E**
 - Machines: 2ZB
 - Humans: <10%

- **2022E**
 - Machines: >10ZB
 - Humans: <10%

SOURCE: Applied Materials model based on forecasts published by Cisco, Intel, Western Digital
ACCELERATION OF A.I. FUELED BY

1. Very large, accessible **data** sets
2. Affordable **high performance computing** to turn data to $$$

MACHINE LEARNING = relentless classification of data to make determinations or predictions

SOURCE: Historic references based on New Street Research, May 2018
A.I. WORKLOADS NEED

A lot of memory
(because there’s a lot of data)

Parallel computing
(for throughput)

Extremely high logic ⇄ memory bandwidth

Sequential computing
General purpose
Good at many things

✓ Parallel computing
✓ Designed for throughput
✓ Great at specialized tasks
A.I. – BIG DATA DRIVING A RENAISSANCE OF HARDWARE DEVELOPMENT AND INVESTMENT

NOVEL HPC
- Quantum
- Synaptic

IN MEMORY COMPUTE
- Analog
- Memristor
- ReRAM/PCM

NEW MEMORIES
- MRAM
- ReRAM/CeRAM
- PRAM
- CeRAM
- FeRAM

NEAR MEMORIES
- DDR
- HBM (High bandwidth memory)
- Flash

ACCELERATORS
- TPU
- GPU
- ASICs
- FPGAs
1,000x

IMPROVEMENT IN COMPUTE PERFORMANCE / WATT NEEDED

SOURCE: DARPA, Intel, NVIDIA, A.I. startups
A.I. NEEDS EDGE AND CLOUD INNOVATIONS...

STORAGE
abundant low cost, high performance, low power data storage

+ **HPC**
orders of magnitude improvement in performance, energy efficiency and cost

WHILE AT THE SAME TIME...

MOORE’S LAW CHALLENGED
as classic 2D feature shrink slows

THE PERFECT STORM

OR

THE PERFECT OPPORTUNITY?
1965: MOORE’S THESIS BASED ON FIVE DATA POINTS
~1975: ESTIMATE UPDATED TO ‘DOUBLING EVERY 2 YEARS’

SOURCE: Electronics, Volme 38, Number 8, April 19, 1965
Projection Held For 40 Years...

Recent data points suggest

-2x more every 5 years

1970 - 2010

$\sqrt[40]{1,000,000} \approx 1.413$

$(1.413)^2$ more every 2 years

-2x more every 2 years

CLASSIC 2D FEATURE SCALING SLOWING

SOURCE: University of Wisconsin
PERFORMANCE IMPROVEMENTS OVER TIME
(VS. VAX-11/780)

- **1978**: 25% per year
- **1986**: 52% per year
- **2003**: 23% per year
- **2011**: 12% per year
- **2015**: 3.5% per year
- **2018**: 0%

End of Dennard Scaling
End of Moore's Law
Limits of parallelism of Amdahl's Law

TIME BETWEEN LOGIC NODES IN YEARS

<table>
<thead>
<tr>
<th>Node Size</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 to 32nm</td>
<td>1.8</td>
</tr>
<tr>
<td>32 to 22nm</td>
<td>2</td>
</tr>
<tr>
<td>22 to 14nm</td>
<td>2.5</td>
</tr>
<tr>
<td>14 to 10nm</td>
<td>>4</td>
</tr>
</tbody>
</table>

SOURCE: Bernstein
In the Past…

MOORE'S LAW

RELATIVE COST/COMPONENT

1962

1965

1970

COMPONENT PER IC

10^5

10^4

10^3

10^2

10^1

1

10

100

1000

10000

100000

POWER

PERFORMANCE

AREA-COST

PPAC

ENABLED BY

“Classic” 2D feature shrinking

+ materials engineering to improve power and performance
In the Future...

ENABLED BY

- New architectures
- New structures / 3D
- New materials
- New ways to shrink
- Advanced packaging

FOUNDATION IS MATERIALS ENGINEERING
3D NAND shows power of architecture inflections

Extended NAND cost roadmap by >10 years + better device

Speed 2x

Endurance 10x

Power efficiency 2x

NUMBER OF CRITICAL ELECTRONS IN NAND CELL
Future 2D shrink is not only limited by resolution, but also **PLACEMENT ERRORS**

State of the art A.I. chip can have up to **100B vias**

Can be addressed by self-aligned structures
MATERIALS-BASED APPROACHES CAN ELIMINATE PLACEMENT ERRORS

Example: ‘Multicolor’ = Fully self-aligned multi-material patterning
ADVANCED PACKAGING
Can Optimize System Level Performance

3x
Logic ↔ DRAM bandwidth performance

50%
Power savings per bit

System on Chip to System on Package
Integration of chiplets provides **time**, **cost** and **yield** benefits

SOURCES: Intel, GLOBALFOUNDRIES
New architectures
New structures / 3D
New materials
New ways to shrink
Advanced packaging

KEY ISSUES =
Complexity ↑
Integration challenges ↑↑
Time to market ↑↑↑

NEW PLAYBOOK NEEDED FOR
CONNECTIVITY + SPEED
"Von Neumann" mindset vs. "Neuromorphic" mindset

TODAY: Serial / compartmentalized interaction between key parts of eco-system

OPPORTUNITY: Parallel development to get powerful tools to designers faster

CONNECTIVITY TO ACCELERATE INNOVATION
A.I. – Big Data Era = the biggest opportunity of our lifetimes

UNLOCKED BY

Hardware renaissance

Materials innovation to enable new architectures, structures, ways to shrink and packaging approaches

New eco-system playbook to drive connectivity and speed