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CURRENT COMPUTING 

Parallelization to reduce latency
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Highly Scaled CMOS

A robust von Neumann architecture powered by the CMOS scaling with 
Moore’s Law 
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TODAY’S PROCESSOR SPEED IS 100X FASTER THAN MEMORY 

FRANC utilizes new materials and devices to make 10x advances in embedded non-volatile 
memories with speed as SRAM and density as storage-class memory 

Non-Volatile
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HDD

0.5-16 TB
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Embedded Memory

64 kB-500 MB
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CBRAM

Storage-Class 
Memory

128 GB-1 TB
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FRANC
<100ps, < 100fJ/b

Processing
Logic Gate

Reference: Siva Sivaram, Western 
digital Corporation, August 9, 2016, 
Flash Memory Summit
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FRANC WILL ENHANCE MEMORY-CENTRIC COMPUTING 
ARCHITECTURE

Emerging Memory-
Centric Computing
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Neumann Computing
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From S. Mitra at Stanford
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Shanbhag, UIUC
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FRANC Poster
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DEVELOPMENT OF NEW MATERIALS

Memristor 
spiking 
neural 
network

Correlated 
electron 
RAM 
(ceRAM)

ceRAM contruction

ceRAM preliminary data
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NEW DEVICE DEVELOPMENT

Voltage-Controlled 
Magnetic tunnel 
junction memory

• Ultra fast switch
• Low switch energy
• Small feature size

Preliminary data

Magnetic tunnel 
junction memory for
stochastic computing

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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NOVEL COMPUTING ARCHITECTURES

UI

RMS Workloads

Deep In-Memory 

Architecture (DIMA)

DIMA physical 

compilers

Deep in Memory Compute
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FRANC PROGRAM STRUCTURE AND METRICS

24 Months

Phase 1 Phase 2 Phase 3

TA1: New Topology Circuit Prototypes

18 Months

TA2: Material Building Blocks

Preliminary 
Design

Detailed Design
Functioning 
Prototype

6 Months

Component 
Spec

Component Design Functioning 
Prototype

Detailed Design: 

• Implement test samples

• Emulation of performance on 

benchmarks

• Down selections

Preliminary Design: 
• Simulated > 10x performance 

enhancement over state of art
• Define detailed metrics 

Functioning Prototype: 
• Execution on benchmark 

performance

• Transition for 
commercialization

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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The hierarchy and the 
hardware and software 
wrapped around it is as much 
defined by each memory 
technology’s “limitations” as its  
“features”

NEW MEMORY TECHNOLOGIES ARE RARE

Year of 1st

Shipment
Memory 
Technology

1969 SRAM

1970 DRAM

1971 EPROM

1986 NOR Flash

1995 NAND Flash

1997 MLC Flash

2008 PCM

EPROM
DerivativesE
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New Memories are Rare

Memories that have shipped > 1Gb densities

• Today’s available memory technologies emerged in the early 70s

• The way memory is used in systems, the memory hierarchy, 
has been defined by the evolution of these memories over four decades.
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CHALLENGES IN INCREASING PERF/VALUE

Energy and Power Dissipation

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)



DATA MOVEMENT DOMINATES ENERGY USAGE
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• Scaling continues

• Latency will not improve significantly

• BW continues to increase with evolving interfaces

• Refresh mitigated using ECC and potentially other 
management

Ideally, the memory controller function splits the memory physics 
and defines control closer to the memory bits

• How do we:

• Avoid moving un-used data over the bus?

• More effectively buffer for lower latency?

• Can some memory intensive compute be done on the 
memory?

• Application specific memory based accelerators

• General purpose local memory low level computation

MEMORY FUTURES

Hybrid Memory Cube

Self Test, Self Repair, Scrubbing,
Refresh, Autonomous Functions

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)



PERFORMING MORE PROCESSING IN MEMORY (PIM) 
(MORE APPROPRIATELY – LOGIC IN MEMORY) TO LOWER POWER? 

Observation: 3D-integration of logic and memory (e.g., HMC) is driving a 
resurgence in the Logic-in-memory conversation

Doesn’t need processor ISA support

Grabiel H Loh, et.al. A Processing –in-Memory Taxonomy and a Case for Studying Fized-function PIM. 
IEEE/ACM International Symposium on Microarchitecture (MICRO-46) 2013. 

Today’s “HMC”
Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)



• What can you get for ~ 1 Watt of Power? 

• If designed correctly… a lot.   For example

CELL PHONES ARE AN INSPIRATION…

The “compute module” could be an SoC or… a bunch of die on a package…

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)



• Assumptions per Compute Molecule 
• 2-3 Watts of Power (Proc Core, Specialized Compute elements (e.g. AI/ML inference engines), 

compute assist in memory, etc.)

Goal:
• 256G DP-Flops/1T – 16-bit Flops ((8-64bit Mul + 8-64 bit Add)*16 cores*1GHz) OR
• ~65 ResNet-50 Inferences/sec (assuming 50% of Peak Efficiency)
• 32 GBytes of DRAM

• Deployed Configuration
• 256 Peta DP-FLOPS/Peak
• ~65M ResNet-50 inferences/s.
• 32 PBytes RAM
• 2-3MW of Power

• Greater resiliency to faults.

• The software lift and programming models need to be comprehended.

HYPOTHETICALLY, WHAT IF WE HAD 
1 MILLION OF THESE DEVICES?

We have the technology – we need to re-design/arrange the pieces of the 
puzzle

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)



INNOVATIVE CLAIMS 

• Improving application performance 
by 10-100x without relying on 
Moore’s law is a challenging 
problem that requires new 
architectural approaches and  
integration solutions.

• Micron proposes a memory-centric 
compute architecture to provide a 
high-performance, energy efficient 
solution for a broad range of 
applications.

MICRON - COMPUTE NEAR MEMORY DEVICE

TECHNICAL APPROACH

• Define a scalable compute-near-
memory architecture that efficiently 
uses novel compute elements and 
memory bandwidth to solve a broad 
range of problems.

• This program implements the
architecture using a chiplet 
approach
with 2.5D integration, validating
performance and energy metrics.

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)
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Thermal 
Compensation limits

THERMAL LIMITS IN AUTONOMOUS PLATFORMS

Current Technology Prevents 
Achievability of Lower Bounds on 

System-level Work 𝑾𝒔𝒚𝒔
𝒕 along with Rad 

Hard Requirements

High Power Signal 
Processing Stages



TRADITIONAL SOLUTIONS RUNNING OUT OF STEAM

[Wong, et al., “CMOS Technology Scaling Trend,”
https://nano.stanford.edu/cmos-technology-scaling-trend, 

2017]
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memory

memory wall

processor

• memory access costs dominate in 
data-centric DoD workloads

• deterministic roots limits device 
options

• energy efficiency gains stagnating
• increased variability; 
• increased susceptibility to SEU

https://nano.stanford.edu/cmos-technology-scaling-trend


THE VON NEUMANN ARCHITECTURE’S MEMORY WALL 
PROBLEM

[Horowitz, ISSCC’14]

Integer ADD Mult

8 bits 0.03 pJ 0.2 pJ

32 bits 0.1 pJ 3 pJ

Computation energy (45nm) Memory access energy (45nm)

Memory 64 bits

Cache 8 KB 10 pJ

Cache 32 KB 20 pJ

Cache 1 MB 100 pJ

DRAM 1.2 – 2.6 nJ

[Canziani, Arxiv16’]
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OUR FRANC PROJECT
MRAM-BASED DEEP IN-MEMORY ARCHITECTURE (DIMA) 

Mission: to realize > 200X in EDP gains in DoD workloads 

Method: by leveraging MRAM-based DIMA within Shannon-inspired Statistical Computing 

UIUC & PrincetonRaytheon Missile Systems

GLOBALFOUNDRIES

DoD System 
Benchmarks 

& 
Specifications

System Test 
& 

Validation

Deep In-memory 
Architecture (DIMA) and 

Circuits

Shannon-inspired Statistical 
Compute Models

MRAM device + MPW

3

1

2

Raytheon Missile Systems



SOLUTION PART 1: GLOBALFOUNDRIES’S 22-NM FD-
SOI E-MRAM

• BEOL integrated with 22nm FD-SOI

• perpendicular STT MRAM 

• bit endurance 100,000 cycles

• > 10 year data retention at 105 0C

• The MRAM Advantage (over 22nm 

SRAM):

• ~46 × higher storage density

• ~13 × lower power consumption

• ~6 × lower standby current

• intrinsically robust to SEU

MTJ

Modified from source: W. Hao, 
GLOBALFOUNDRIES, Shanghai MRAM Workshop 
2018



BUT……MRAM ACCESSES LIMITED BY ENERGY-
DELAY-ERROR RATE TRADE-OFF

12X

• ~12 × slower write speed

• fundamentally stochastic R/W behavior

• mismatched to the von Neumann 

architecture:

• aggravates the memory wall problem

• high cost of determinism

𝜖 𝐸, 𝑇𝑔 ≈ 𝑒− 𝐸𝑇𝑔

𝐸 𝑖, 𝑇𝑔 = 𝑖2𝐼𝑐𝑟𝑖𝑡
2 𝑅𝑇𝑔

Power-Performance-Area Benchmarking of STT 

MRAM for Server Cache Applications,  N. 

Sharma, A. P. Jacob, G. Gomba, IEEE NE 

Technology forum (Aug’2016)



https://spectrum.ieee.org/computing/hardware/
to-speed-up-ai-mix-memory-and-processing

The Deep In-memory 
Architecture

(DIMA)
“tearing down the memory wall”

[Verma, Shanbhag, STARnet SONIC]

SOLUTION PART 2: THE DEEP IN-MEMORY ARCHITECTURE 
(DIMA)

https://spectrum.ieee.org/computing/hardware/to-speed-up-ai-mix-memory-and-processing


THE DEEP IN-MEMORY ARCHITECTURE (DIMA)

BLP BLP BLP BLP BLP BLP

Cross Bitline Processor

Residual Digital  Unit

Precharge/Column Mux/Y-DEC

X-
D

EC

X-
D

EC

inference/decisions

bitline processing
(SIMD analog processing)

multi-row functional READ
(reads multiple-bits/row/precharge)

cross bitline processing 
(analog averaging enhances SNR) 

low complexity, low (decision) 
rate digital output 

analog, mixed-signal
low-SNR processing

[ICASSP 2014 UIUC, JSSC 2017 Princeton, JSSC 2018 UIUC]

read functions of data (never the raw data)

standard bit-cell array
(preserves storage density)



SRAM DIMA PROTOTYPES

[UIUC: Kang, JSSC’18] [UIUC:Kang, JSSC’18, 
ESSCIRC’17]

[UIUC:Gonugondla,
ISSCC’18]

53× EDP ↓ 7× EDP ↓ 100× EDP ↓

Multi-functional
inference 
processor 

(65nm CMOS)

Random forest 
processor

(65nm CMOS)

On-chip training 
processor

(65nm CMOS)

175× EDP ↓

Fully (128) row-
parallel compute
(130nm CMOS)

[Princeton: Zhang, 
JSSC’17,VLSI’16]

256 column-parallel 8 bit-parallel compute



SOLUTION PART 3: SHANNON-INSPIRED 
STATISTICAL COMPUTING

https://spectrum.ieee.org/semiconductors/pro
cessors/the-era-of-errortolerant-computing

“reliable computing with 
unreliable components”

[Shanbhag, Verma, Varshney, 
Grover, STARnet SONIC 

faculty]

https://spectrum.ieee.org/semiconductors/processors/the-era-of-errortolerant-computing


SHANNON-INSPIRED STATISTICAL MODEL OF 
COMPUTING

computation as information flow across low-SNR nanoscale fabrics
information-based design metrics - mutual information (MI) 

𝐼( ෠𝑌; 𝑌𝑜)
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stochastic nanofunctions deep in-situ architectures
low-SNR nanoscale fabrics

DISADIMA
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EXPECTED PROJECT OUTCOMES

DIMA-driven MRAM Device Optimization 
for 

High-density & Low-energy

Volume I Technical & Management Proposal 
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• Computations, both within a single column and across columns, especially for enabling 

highly multi-functioned DIMAs, require extremely compact, pitch-matched peripheral 

circuitry, to maximize array efficiency. Extending DIMAs to foundry-provided platform-

design tools, such as compilers, requires a parameterized design approach to DIMAs, 

whereby the layout for multi-functioned periphery can be systematically constructed, by 

exploiting the highly regular structure of DIMAs. 

• DIMAs, particularly with the proposed statistical compute models, completely change the 
design objectives for bit cells. This leads to substantial relaxations, enabling the broader 

utilization of emerging memory technologies, such as MRAM, especially to leverage 

nonvolatility towards new applications and power-management strategies.  Highly parallel 

operation mitigates read-current requirements, while statistical compute models greatly 

reduce the wide read/write margins limiting such technologies today, enabling their 

optimization to aggressively dense and low-energy design points.        

INNOVATIVE CLAIM 1: DIMA MRAM Optimization for High-density & Low-energy  

Spin-torque-transfer (STT) MRAM, based on a perpendicular magnetic tunnel junction (pMTJ), 

is a state-of-the-art embedded memory in the foundry ecosystem, with full-array capability 

demonstrated by GLOBALFOUNDRIES at the 22nm SOI node, as shown in Fig. 3a and Fig. 3b 

[SNW+16, SHW+17]. In addition to high reliability (endurance), high speed (20ns/50nm 

read/write), and low energy (0.1pJ/2pJ read/write) demonstrated in a 1Mb/40Mb sub-/array, the 

nonvolatility enables aggressive power management in high-performance and embedded low-

power applications. However, even with such demonstrations, MRAM faces process-integration 

and read/write margining challenges, which pose major barriers to aggressive scaling in the 

future, as densities well beyond the 0.042µm
2
 bit-cell size of today are targeted. These challenges 

will be overcome through the statistical compute models employed within DIMAs. 

Low MRAM read energy (low WL and pMTJ bias) is well aligned to DIMA due to its highly 

parallelized functional-read operation. But, in fact, DIMAs further alter the bit-cell design 

objectives in several ways critical to driving MRAM scaling. New high-density and low-energy 

design points for the pMTJ stack optimized for DIMAs will be demonstrated within the foundry 

environment at GLOBALFOUNDRIES. Considering the typical MRAM margining plan shown 

in Fig. 3c, DIMAs offer several transformational opportunities for MRAM scaling. First, row-

   

(a) pMJT stack. (b) 40Mb MRAM demonstration. (c) MRAM margining plan. 

Figure 3. MRAM bit-cell details and array demonstration. 

Free Layer
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Parameterized DIMAs for Platform-design Tools

Multi-functioned DIMAs for Broad Application-
level Usage

Statistical Compute Models for Aggressive 
Scaling

Volume I Technical & Management Proposal 
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parallel functional read enables, and in fact requires, substantial relaxation of the bit-cell read 

current, since multi-row activation leads to parallel currents on the BLs. This will enable reduced 

read bias voltages (for pMTJ stack and select transistor), further reducing the read energy and 

increasing the biasing margin between required read and write currents, which today requires 
12σ separation (Fig. 3c). Second, substantial leverage will be gained from DIMA statistical 

compute models (including learning and error compensation, described below), which enable 

much higher read/write bit-error rates (BERs) than conventional memory. Specifically, this will 

enable lower write biases across the tunnel barrier in the pMTJ stack, allowing for lower write 

energy and greater margin between the write voltage and the tunnel-barrier breakdown voltage, 

which today requires further 12σ separation (Fig. 3c). Further, the statistical compute models 

will enable reduction in area of the pMTJ stack, as well as reduction in size of the select 

transistor and the write access time, which are limited today by the need to ensure low read/write 

and low write errors, respectively. To extensively leverage the statistical DIMA compute models 

towards these relaxations, statistical device models of MRAM, calibrated to measured devices, 

will be developed by GLOBALFOUNDRIES, for the aggressive unconventional design points 

targeted in DIMAs. These will be utilized in DIMA design and analysis by Princeton and UIUC, 

towards the demonstrations proposed.   

INNOVATIVE CLAIM 2: Multi-functioned DIMAs for Broad Application-level Usage 

Broad application-level impact of MRAM-based DIMAs and their easy of integration into future 

designs will be enabled by multi-function support and standardized interfaces for mapping 

computation. While the description of DIMAs thus far has focused on their concept and 

structure, leading to orders-of-magnitude energy and throughput gains, the actual functionality 

offered is also extremely rich. Fig. 4a shows the architecture of a multi-functioned DIMA, 

demonstrated in silicon by UIUC [KGP+16]. Along the sides, row-pitched functional read (FR) 

periphery modulates input data in parallel on the WLs (our examples have done this using 

amplitude modulation, pulse-width modulation, and a hybrid of the two). Along the top, column-

pitched Bit-Line Processors (BLPs) and a Cross Bit-Line Processor (CBLP), which is coupled to 

a low-sample-rate ADC and Residual-Digital-Logic (RDL) blocks, provide diverse 

computational functionality within and across columns, respectively. Through charge/current-

domain operation on the BLs, the BLPs perform vector/scalar dot-product and vector/scalar 

  

(a) Multi-functioned DIMA. (b) Workloads mapped via DIMA instruction set. 

Figure 4. Demonstration of a multi-functioned DIMA with instruction set. 
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Manhattan-distance computations, while the CBLP provides weighted summation, leading to an 

efficient summarization of data, and which forms the basis for many emerging workloads, 

particularly from machine learning. In fact, incorporating these, as well as ADC and RDL 

operations, we have demonstrated an instruction-set architecture for DIMAs, in which we also 

provide instructions for controlling computational SNR and energy, by regulating the level of BL 

swing. Based on this, UIUC developed a simulation model calibrated to silicon measurements, 

for enabling architectural design. Fig. 4b shows the factor improvement in energy and 

throughput, simulated for various machine-learning workloads mapped to the DIMA. Supporting 

a base of kernels within DIMAs in this way, and providing standardized interfaces for their 

execution, will be essential for maximizing the applicability of DIMAs across system designs.   

INNOVATIVE CLAIM 3: Parameterized DIMAs for Platform-design Tools 

The creation of platform-design tools will be an important means for transferring MRAM-based 

DIMAs to the foundry environment within GLOBALFOUNDRIES. The ability to integrate 

DIMAs in a large number of designs will be realized through the creation of such tools, in the 

form of compilers, which can generate circuit models and layouts of DIMAs having various sizes 

and supporting various functionalities. This will necessitate a parameterized design approach to 

DIMAs, whereby multiple banks, each composed of a bit-cell array and peripheral circuits sized 

and configured for the desired design points, can be automatically constructed. Such a 

parameterized design is enabled by DIMA’s highly regular structure. Though similar in this way 

to memory, the peripheral circuitry through which computations are performed result in 

specialized design considerations. Additionally, the energy and throughput versus 

computational-SNR tradeoffs give rise to specific rules for how DIMA banks should be 

partitioned and scaled. Yet, these specialized tradeoffs, benefitting from the regular structure of 

DIMAs, can be readily codified into platform-design tools.  

For instance, analysis of the current Princeton and UIUC DIMA prototypes has shown that bit-

cell design and biasing is largely invariant to array size. This can be seen considering 

computations within a column, where increasing the number of rows increases the BL 

capacitance, but the number of accessed cells can simply be increased in proportion due to 

current/charge-domain operation. Thus, parameterized design largely involves the peripheral 

circuitry, similar to the WL drivers, sense-amplifier clocking, etc. in memories today. As an 

example, Fig. 5a shows a WL driver used to provide amplitude-modulated input data on the 

WLs, through a current DAC and bit-cell replica, appropriately upsized for the WL-capacitance 

output time constant [ZWV16, ZWV17]. Going further, Fig. 5b shows column-pitched BLP and 

  

(a) Amplitude-modulating WL driver, to control cell current. (b) Column-pitched periphery circuits. 

Figure 5. Initial demonstration of elements for parameterized DIMA design. 

Volume I Technical & Management Proposal 
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CBLP circuit layouts from a current conservatively designed DIMA demonstration [KGP+16], 

laying a path to compilers based on parameterized design.      

INNOVATIVE CLAIM 4: Statistical Compute Models for Aggressive Scaling  

Going beyond current/charge-domain analog computation, which is needed for performing 

meaningful computations in constrained memory structures, statistical compute models are 

essential in enabling DIMAs to perform robust computations while pushing the SNR into a 

regime where the aggressive energy and throughput gains are derived. In this way, the compute 

models will also be essential for the adoption and aggressive scaling of new materials and 

technology innovations, especially directed at MRAM, which will drive future DIMA scaling.   

Fundamentally, while DIMAs push the computational SNR, their approach of performing 

aggregating computations before making an SNR-limited hard decision (slicing) gives lower 

error probability than the approach of making SNR-limited hard decisions before aggregating 

computations, as done in conventional architectures, which separate memory and computation. 

Indeed, it is possible to show that even for a 1-bit architecture, DIMA’s accuracy will be strictly 

better than that of the conventional architecture, and that this accuracy gap is maximized in the 

low compute-SNR regime. Thus, properly mapping computations to analog operations within 

and across DIMA columns, gives both superior SNR efficiency as well as substantial opportunity 

to optimize SNR efficiency. Previous demonstrations of DIMAs at UIUC have harnessed this 

opportunity through interfaces (instructions) to control computational SNR in the form of BL 

swing, enabling the SNR efficiency to be tuned to applications [KGP+16, KGS+17]. We will 

build upon these insights to determine energy-optimal, fine-grain BL swing assignments for a 

specified level of accuracy, and systematically determine the key trade-offs that can maximize 

the energy and latency gains over conventional von Neumann architectures.        

Going further, for machine-learning workloads, previous DIMAs at Princeton and UIUC have 

extended the compute models through statistical learning and error compensation. For instance, 

DIMAs deliver particularly large energy and throughput gains when performing operations on 1-

bit stored data, due to natural structural alignments in terms of input data flow and analog 

representation. Our DIMAs have exploited 1-bit weight representation in DNN workloads, but 

also a specialized algorithm, referred to as Constrained Resolution Regression (CRR) for kernel 

classifiers and boosted classifiers to learn optimal machine-learning models based on 1-bit 

weights [WV17]. This is illustrated in Fig. 6a, showing an overview of results from different 

  

(a) Comparison of standard vs. DIMA-specialized CRR 

training. 
(b) Chip measurements showing circuit non-

idealities overcome through boosting iterations. 

Figure 6. Illustration of DIMA compute models leveraging statistical learning and error compensation. 
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