THE ELECTRONICS RESURGENCE INITIATIVE

LIFELONG LEARNING MACHINES (L2M)

HAVA SIEGELMANN

PROGRAM MANAGER DARPA MTO

AI TODAY

1. Programs, Rule-based systems (human experts +

databases + processors)

2. Machine learning (parametric structure + learning rule +

training-databases + more-processors)

AI LIMITATIONS

AI systems only compute with what they've been programmed or trained for in advance

AI: Both algorithms and machine learning are frozen after preparation phase

- 1. Malfunctions in circumstances that exceed preparation: No way to prepare for every eventuality
- 2. No easy fix to learn from errors, enlarging repertoire of behaviors (catastrophic forgetting)
- 3. Worsens with increase in autonomous applications

https://ichef.bbci.co.uk/news/6 60/cpsprodpb/7708/production/ _99727403_b02dbecb-aa3a-4aea-a013-170ffbfb0fd4.jpg

https://i.guim.co.uk/img/media /70d0711df5ee63efc8e012dc7e 085a43863fbc8f/59_0_2986_17 92/master/2986.jpg?w=620&q =55&auto=format&usm=12&fit =max&s=510e1039a4cb541e5 a746f0d711d59d9

https://www.vosizneias.com/wpcontent/uploads/2018/03/ubers-725x269.jpg

©Tempe Police Department DISTRIBUTION A. Approved for public release: distribution unlimited.

TODAY'S COMPUTATIONAL FOUNDATION: TURING MACHINES

In 1936, Alan Turing modeled "human-calculators" as theoretical automatic machines

DISTRIBUTION A. Approved for public release: distribution unlimited.

TURING ON INTELLIGENT MACHINES

ttp://godsandfoolishgrandeur.blogspot.com/2013/10/ lan-turing.html

"Electronic computers are intended to carry out any definite rule of thumb process which could have been done by a human operator working in a disciplined but unintelligent manner." ('50)

"My contention is that machines can be constructed that will simulate the behaviour of the human mind" ('51)

"What we want is a machine that can learn from experience" ('47)

SUPER-TURING CONTINUUM HIERARCHY

Neural Networks and Analog Computation **Beyond the Turing Limit**

Birkhäuser

Continuum of computational hierarchy: From Turing Machines (fixed programs) to Super-Turing Computation (modifiable programs)

Turing machines change output based on input

Super-Turing machines change program based on inputs

Change of any of the following TM properties will lead to ST

- 1. Discrete values
- 2. Deterministic
- 3. Pre-programmed
- 4. One algorithm

Analog values (Real) Randomness/asynchronous Lifelong Learning, evolving Series of machines

 $\alpha \in \text{Kolmogorov}[f(n),g(n)]$: UTM calculates α [n-prefix] from f(n) bits in g(n) time P=K[1,p(n)] AnalogP=K[n,n]

Turing suggested these properties for future computers that can learn

•••••

NATURE COMBINES TURING WITH SUPER-TURING COMPUTATION

- Turing machines change output based on input
- Super-Turing machines change program based on inputs
- Nature systems follow (Turing-like) programs
- They adapt as needed, changing their Turing programs
- They store revised Turing programs as components for future use

WE WANT: LIFELONG LEARNING FOR AI APPLICATIONS

LIFELONG LEARNING SYSTEM

Today

- Execution follows completed training cycle
- Fixed during execution
- Hardware static systems for an AI method

Next Generation

- Continues learning during execution
- Program adapts to new situations, new tasks
- Hardware supports updates, protects manipulations

DISTRIBUTION A. Approved for public release: distribution unlimited.

CORE CAPABILITIES OF AN L2M SYSTEM

Examples L2M systems:

- A car that becomes better on snowy roads each time it drives on them (an expert)
- A plane that learns to fly more efficiently and safely
- 1. Continual learning systems capable of learning during execution, data not i.i.d.
- Adaptation to new tasks and circumstances applying previously learned skills to novel situations without forgetting previously learned tasks
- **3. Goal-driven perception** choosing and perceiving input signals from mission view
- **4. Selective plasticity** balancing stability vs. plasticity; knowing when to learn
- Safety and monitoring ensuring correct behavior in a system that continues to change

L2M PROGRAM STRUCTURE

DISTRIBUTION A. Approved for public release: distribution unlimited.

SOME CURRENT IDEAS FOR SOLUTIONS

CONTEXTUAL ADAPTATION (CLUNE)

Bio-inspired neuromodulation divides the network into modules of reusable memories based on context

AUTOGENERATING NN (LIPSON)

Build network that generates itself (auto-generation). Build neural nets that generate better neural nets

SELF-DIRECTED NN (LEARNED-MILLER)

Source: UMass Amherst

Agent uses downtimes to challenge itself with surrogate tasks – to learn in the absence of explicit labels

SOMATIC COMPUTATION (LEVIN)

(Corucci et al, 2016)

Bioelectric somatic like computation to recover from injury, flexible robots and adapt to new environments

TASK REUSE (EATON)

Source: University of Pennsylvania

Efficient re-use of previously learned computational primitives and their continual improvement

SLEEP AND MEMORY (MCNAUGHTON)

Fast and slow "index-code" learning (hippocampus-cortex) drives selective plasticity, reduces catastrophic forgetting "...it is not the strongest that survives; but...the one that is able best to adapt...to the changing environment...."

L.C. Megginson, re "On the Origin of Species"

https://www.izlesene.com/iz/memcn3342

"Once you stop learning, you start dying."

Albert Einstein

Thank you

DISTRIBUTION A. Approved for public release: distribution unlimited.

SELF-SIMULATING SYSTEMS FOR LIFELONG LEARNING

- APPRIL

HOD LIPSON

PROFESSOR COLUMBIA UNIVERSITY

Self-Simulating Systems for Lifelong Learning

Hod Lipson, Robert Kwiatkowski, Oscar Chang, Chad DeChant, Columbia University

With Josh Bongard, Viktor Zykov

MODULAR ADAPTATION

Model of "Self" can be reused In new tasks Task can be reused in a modified "self"

Damage Detection

Median Drifts For Different Methods

Robert Kwiatkowski, Hod Lipson, (2018) A Self-Modeling Framework for 2D and 3D Articulated Arms, Submitted,

ADAPTING NN ARCHITECTURES

Arbitrary Weight Sharing Needs Computational Infrastructure

20

QUINES – SELF REPLICATORS

<u>A Python Quine:</u> s = 's = %r\nprint(s%%s)' print(s%s)

Is there a *Neural Network Quine*?

Epoch 10 Test Loss $L_{SR} = 0.86$

Chang, Lipson "A Neural Network Quine", (ALIFE) 2018

Bucket	Trainset Size	(Mean, Std.) of Average Steps in Trainset	(Mean, Std.) of Average Steps in Generated Samples
1-50 steps	687	37.1, 8.7	17.3, 17.8
51 - 100 steps	539	68.4, 14.9	37.7, 35.4
101 - 150 steps	219	126.7, 16.0	75.6, 58.0
151 - 200 steps	555	186.7, 15.1	124.0, 58.0

Auto-Generated NN for cart-pole balancing

Chang, Lipson "Learning a Generative Model For Neural Networks", (Alife) 2018

Self-Simulating Systems for Lifelong Learning

Hod Lipson, Robert Kwiatkowski, Oscar Chang, Chad DeChant, Columbia University

ERI ELECTRONICS RESURGENCE INITIATIVE

SUMMIT

2018 | SAN FRANCISCO, CA | JULY 23-25