Lifelong Learning of Perception & Action in Autonomous Systems

Eric Eaton, PI (U.Penn), Satinder Baveja (U.Michigan), Michael Littman (Brown U.), Peter Stone (UT Austin), Fei Sha (USC)

Driving Applications: Lifelong Learning Machines (L2M)

DARPA Lifelong Learning Machines (L2M) Program

The L2M program seeks to develop substantially more capable learning systems that:
- Continuously improve performance with experience, and
- Rapidly adapt to new conditions and dynamic environments.

L2M studies both natural (biological) and artificial (machine learning) mechanisms for lifelong learning.

Our Research Goals

Develop a comprehensive approach to lifelong machine learning in autonomous systems that includes:
- A general-purpose continual learning framework that integrates classification, regression, and reinforcement learning
- Safe knowledge transfer between diverse tasks
- Scalable lifelong knowledge maintenance of structured, composable knowledge
- Self-directed learning for autonomous discovery
- Modeling the non-stationary distribution of tasks

Apply L2M to autonomous mobile service robots
- Focus on integrated perception and action
- Real and simulated unstructured, dynamic environments
- Persistent deployment of service robots across our universities

Summary of Our General L2M Framework

Key Innovations:
- Continual lifelong machine learning for perception and action
- Autonomous cross-domain transfer between diverse tasks and across different learning settings (e.g., classification, regression, & RL)
- Dynamic composition of layered knowledge
- Rapid learning from high-level task descriptions
- Selective attention mechanisms learn what knowledge to retain/forget
- Intrinsic motivation, safe exploration, and learning curricula drive the development of broad competence
- Adapt as non-stationary tasks/requirements change over time

Application to Autonomous Mobile Service Robots

Service robotics provides a challenging and compelling application for L2M:
- They are expected to be versatile, capable of reliably performing a wide variety of tasks in diverse environments
- To be effective, they must be able to:
 - Rapidly learn new skills from minimal training
 - Operate effectively and safely alongside humans
 - Generalize effectively across diverse scenarios

SOTA: Current service robots are highly brittle – they only perform few predesigned and well-scripted tasks, without the capability to autonomously learn new tasks or adapt to anything but the smallest changes in their environment or goals.

Expected Outcome: L2M methods will be applied to control real and simulated service robots that are continually deployed in unstructured indoor office/university environments.
- Will support lifelong transfer across tasks/environments, enabling robots to learn new tasks and adapt dynamically
- Robots will be continually deployed across our universities

Evaluation via a Scavenger Hunt:
- Integrated evaluation scenarios that contain types of tasks all service robots will be expected to perform
- Numerous opportunities for sharing knowledge and task structures at multiple granularities
- Designed to be replayed by other researchers using other L2M approaches in different environments, enabling comparison

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.