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: Near Zero Power RF and Sensor Operations (N-ZERO)

Asleep Yet Aware, Awake on Declare
Virginia Efficient Near-zero Ultra-low-power System
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Overview of Event Driven Sensor Nodes
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For event driven sensor nodes with low activity factors, WuRx
power can dominate battery lifetime.

The self discharge of a battery is about 10nW. Assuming that a sensor node turns on
for approximately 10 seconds to take a measurement and transmit the data back,
and uses 1mA DC current draw during active mode, it becomes critical to keep all a
sleep mode power including the WuRx below 100nA and even 10nA for activity
factors less than once per hour [2].
Similarly, receiver sensitivity is of fundamental performance as it enables sensors to
be activated at larger distances.
Through the N-Zero program, critical metrics such of power consumption and
receiver sensitivity are improved by greater than 1 and 2 orders of magnitude
respectively.

üProb. Of Detect.: >99% 
ü False Alarm Rate: <1/hour 
üSignal Detection: <2mS

Envelope detector first architecture
utilizes passive voltage gain followed by an
envelope detector. Low frequency
baseband amplification can achieve noise
limited, not voltage limited operation, and
ultra low power digital correlation rejects
false positives while maintaining
sensitivity. Automatic offset calibration
maintains functionality in the presence of
process and temperature variation and
external interferes. [1]

RF Wakeup

Virginia Efficient Near-zero Ultra-low-power System (VENUS) Concept

How Low is Low Enough Power? Acoustic MEMS Devices Interference and Process Variation Rejection
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This Work

DARPA NZero

System Opportunities:
Large Scale Fields of Sensor Nodes that can last for years on a small coin-cell battery
Ongoing Needs:
Sensitivity, High RF Freq., Self-Calibration, Node Selectivity, Efficient Low Power Transmitter

DARPA N-ZERO
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Ultra-Low Power Active Circuits System Performance
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10-3 Sensitivity

ü DC Power: <10 nW
ü Sensitivity: -76 dBm
ü Signal Energy: <30pJ
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Opportunities: Very high quality factors enable transformations to very large impedances found within
ultra low power systems.

Opportunities: Create very sensitive,
passive detection by trading off
sensitivity, speed and input
impedance at frequencies where low
power RF amplification is not
attainable. RF frequencies detectable
at a GHz or more [2].

Opportunities: Enables detection of
mV level baseband signals while
consuming just a few nW of power.
Increase reliability and error correct
for imperfect RF and mixed signal
circuits and provide selectivity
between signals [1,3].

Baseband Amplifier:

Comparator

System Design

Opportunities: Enable robust performance in a variety of electromagnetic environments by
actuating the receiver threshold based upon measured response of the comparator.
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