

Driving Applications: Near Zero Power RF and Sensor Operations (N-ZERO)

Overview of Event Driven Sensor Nodes

<image/>	<image/> <image/>
<image/>	Ambient Signatures
System Opportunities: Large Scale Fields of Sensor Nodes that can last for years on a small coin-cell battery Ongoing Needs: Sensitivity, High RF Freq., Self-Calibration, Node Selectivity, Efficient Low Power Transmitter	
How Low is Low Enough Power?	
Event Duration	$I95 \text{ mAh} \qquad \qquad$
RF/ambie No wakeup wakeup	ent 10 $I_{Sleep} = 0 nA$

For event driven sensor nodes with low activity factors, WuRx power can dominate battery lifetime.

The self discharge of a battery is about 10nW. Assuming that a sensor node turns on for approximately 10 seconds to take a measurement and transmit the data back, and uses 1mA DC current draw during active mode, it becomes critical to keep all a sleep mode power including the WuRx below 100nA and even 10nA for activity factors less than once per hour [2].

Similarly, receiver sensitivity is of fundamental performance as it enables sensors to be activated at larger distances.

Through the N-Zero program, critical metrics such of power consumption and receiver sensitivity are improved by greater than 1 and 2 orders of magnitude respectively.

VERSITY RGINIA

lectrical & Computer Engineerir EGE OF ENGINEERING

The material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Asleep Yet Aware, Awake on Declare Virginia Efficient Near-zero Ultra-low-power System

Steven M. Bowers¹, Benton Calhoun¹, N. Scott Barker¹, and Songbin Gong²

