

CAMEL: Camera Adaptation with Embedded Machine Learning Based Feedback Control

Burhan A. Mudassar Georgia Institute of Technology

Driving Applications: Reconfigurable Imaging (ReImagine)

his research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

Smart Surveillance

Aerial Surveillance

High Speed Object Tracking

Objective: A Camera that delivers higher quality of useful content

Innovation: An adaptive camera model that uses embedded deep learning algorithms to dynamically control sensor parameters (Spatial/Temporal Resolution, Modality)

Adaptive Camera with Spatial + Modality Control

Approach	Tracking Accuracy (MOTA)	Object Detection Accuracy (mAP)	Bandwidth (Mbits/s)	
Baseline	0.528	0.467	61.93	
Spatial Res. only	0.544	0.467	19.88 17.50	
Proposed (Spatial + modality)	0.650	0.500		

- Higher tracking performance is delivered under 3x lower bandwidth
- Losses in tracking accuracy/object detection accuracy due to illumination variances within the scene are recovered through modality control

Adaptive Camera with Spatiotemporal Control

Training of DNNs

1. Data Augmentation

2. Similarity Loss

[Attention]

(Cross entropy loss

(Cross entropy lo

- Task accuracy can degrade for mixed parameter (spatial + modality + temporal) input
- DNNs are retrained with data augmentation and novel loss functions to ensure robust performance for mixed parameter input
- · Training process can be adapted to any user-defined task e.g. Facial Recognition

RGB Mixed-Modality Image Creator Acquisition Control

- Noise-robust network can enhance the tolerance to noise and recover the accuracy degradation.
- Noise robust adaptive camera uses mixture of pre-processing techniques

Mixture of Preprocessing Experts

MOTA - Multiple Object Tracking Accuracy

Network	Feedback	Feedback + σ=0.15
Non-Robust (Data augmentation only)	0.527	0.345
Noise-Robust	0.527	0.451

22	Number of Operations (GFLOPS)	Platform	Conv Backbone	Latency (s)	Frame Rate (fps)	AP (Person)	мота
	= Backbone (ResNet 101) = RPN (50 Proposals) = ROI Prediction = Gating = Denoise	GTX1080 [300W]	ResNet-101	0.128	7.8	0.43	0.54
			ResNet-101	21	0.04	0.43	0.05
		mGPU [5W]	SSD MobileNet v1, Class- based Training+Pruning	0.099	10.1	0.27	0.35

- Latency between acquisition of frame and generation of feedback degrades the tracking accuracy
- Hardware/Software innovations are needed to speed up DNN inference