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Radio frequency systems that can wirelessly charge and communicate to miniature and chip scale devices are important for the emerging application of hardware root-of-trust embeddable in packages of electronic components. This work develops two
complimentary approaches. The first approach uses near field inductive wireless link, and the second approach is based on an acoustic link. Both approaches address the same challenges and enable long range communication in a small form factor.
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Near Field Inductive Wireless Link Integrated Wireless Power & Communication Acoustic Link Motivation Experimental Results

* Inductive wireless charging and communication between two
systems of radically different sizes
* Spatially and weakly coupled tri-coil system as synthesis
framework to determine power transfer efficacy (PTEF)
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Chip-scale acoustic powering and communication is relevant for various
applications. Some examples are:

* Through-package wireless powering
* Communication with Internet of Things (IoT) devices
* Energizing biomedical implants, wearable devices and MEMS

Objective of this work: Powering of communication with electronic
components embedded inside the package of integrated circuits.

Acoustic approach can overcome some of the downsides of EM waves,
which for are not suitable for metallic

Furthermore, when properly scaled, the acoustic approach will enable a
longer communication range given the the chip size (< 200 x 200 pm?)

Experimental setup used to
verify the performance of the
sensor

On Channel 1 we connect a
probe to generate the
ultrasound waves that are
picked up by the device.

On Channel 2 we measure the
electrical response of the
sensor.

By comparing the signals on
Channels 1and 2 we are able to
asses the sensor performance.
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> Range extender is planned to be fabricated on a flexible substrate, but first
fabricated on a thin Duroid board to validate the theory



