
This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are
those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.
Distribution Statement A – Approved for Public Release, Distribution Unlimited

:

Enabling Co-Design for DSSoC Processors
Cosmic Castle
Jeffrey S. Vetter

Click to add text

Aspen Performance Models

Quantitative Ontologies

Programming Systems

Runtime and Operating SystemsCo-Design for DSSoCs

Innovation and Impact

Project URL: https://ft.ornl.gov/dssoc
PI: Jeffrey S. Vetter: vetter@computer.org

Project URL: https://ft.ornl.gov/dssoc
PI: Jeffrey S. Vetter: vetter@computer.org

The goal of the Intelligent Scheduler (IS) is to find the optimal mapping between tasks and the available PEs.
The IS receives inputs from:
• Ontology
• Application and kernel performance models
• Introspective information collected by the Performance Functional Unit (PFU) thread

IS algorithm: The IS makes informed decisions about which task to run on the available PEs. The process is
divided into Matching (based on ontology and performance models) and Scheduling (runtime scheduling
algorithm and dynamic resource allocation). Our solution will provide a scheduling framework into which
scheduling algorithms can bel plugged in and out.

PE Hardware Abstraction Layer (HAL): The HAL provides a generic PE abstraction to applications and runtime
software and hide the low-level architecture details of each PE.

Introspective Layer (IL): The IL collects accurate performance and power metrics from each PE while
executing tasks (Performance Functional Unit thread).

Static Analysis
•Extracts architectural-independent features
•Provides structural knowledge of the analyzed kernels
•Indicates similarity relationships between kernels
•Enables deciding which kind of PEs to be included in the DSSoC design

Dynamic Analysis
•Complements static analysis with pointer analysis and dynamic binding
•Determines how many kernels are executed concurrently and of which kind
•Collects dynamic information (data movement, pre-fetching and stall cycles)
•Enables power consumption measurements and estimation

SoC Design Specification
•Follows a data-driven design space exploration analysis
•Uses PE performance models obtained from Aspen
•Plans to employ robust and well-known numerical optimization techniques
•Refines ontology to add or remove PEs and to modify some of the design parameters

Goal: Enable de-coupling of programmers from the underlying hardware with enough abstraction while still
being able to utilize the underlying hardware optimally.

Proposed Work: The proposed software ecosystem will provide new levels of performance portability and
tool-chain interoperability across diverse range of emerging technologies.

• Provide performance portable programming solutions for the heterogeneous DSSoC.
• Provide integrated performance analysis/debugging solutions for these programming systems.
• Provide a common compiler tool-chain infrastructure for the above solutions.

The proposed solutions are based on 1) the LLVM production compiler infrastructure, 2) ARES HLIR, a high-
level compiler intermediate representation, 3) OpenARC, a research compiler for rapid prototyping of
directive-based language extensions, and 4) a portable profiling and tracing toolkit for performance
analysis of parallel programs.

Aspen Modeling Framework: Aspen is a domain-specific language and toolkit for performance modeling:

• Application Models: represent basic resource descriptions and control flow of applications using
expressions including user-defined parameters and optional traits to describe semantic information

• Abstract Machine Models: represent basic characteristics of systems, such as multiplicity and hierarchy of
each hardware component, as well as how resources map to costs (e.g., time and power).

COMPASS: a framework for automated performance model generation and performance prediction, which
generates a structured, parametrized Aspen performance model.

• Static analysis: analyzes an input program and generates a parametrized application performance model
• Aspen performance prediction tools: digest the generated Aspen models, synthesize symbolic equations

representing application characteristics, and derive various performance predictions

Holistic Modeling for Design, Analysis, and Execution of DSSoCs: the above Aspen frameworks will provide
an integrated methodology for design, analysis, and execution of DSSoCs across the architecture,
programming and runtime system, and application ontologies.

Innovative Claims

We propose a multi-level, vertically-integrated strategy to design DSSoCs,
based on an extension to a cross-cutting Co-Design methodology (Aspen).
Aspen allows:

 Architecture-independent application models
 Quantitative ontologies for specific domains
 Define PEs and their placement in the DSSoCs
 Performance models to inform configurable compiler infrastructure and

intelligent runtime scheduling
 Fast design space exploration of DSSoCs
 Design and implement novel embedded Performance API for dynamic

configuration and performance feedback

Impact

ORNL will provide fundamental methodologies for Co-Design that will enable
architects and customers to design efficient and high performing DSSoCs
without incurring unreasonable ASIC production or software cost.

 Open source software
 Distribute results and tools to ERI stakeholders
 Pushing technologies to open standards and vendors
 Organize cooperative workshops and 1-to-1 interactions

Dynamic
Analysis

Static
Analysis

Compilers:
• # of floating point instructions
• # of Load/Store operations
• Parental Relation
• Polyhedral Analysis
• Array Summarizations
• Data-flow Analysis
• Dependences
• Control Flow Dependences
• Global accesses
• Passed Arguments
• Data Access Summarization

Profiling/Tracing:
• Functional Memory Access

• Address R/W/RW
• Functional control flow
• # Invocation of procedure

• # Statement invocation
• Braches taken / # of

loops iterations
• Kernel concurrency
• Concurrent kernel types
• Pre-fetching activities
• Stall cycles

Re
pr

es
en

ta
tiv

e
Ke

rn
el

s

Ontology

Design space exploration:
• # PEs
• What types of PEs
• # PES of each type
• Level of specialization
• PE Position within the chip
• PE performance model in

ASPEN

SoC Design
Specification

source code
Input Program

Analyzer

Aspen
machine
model

OpenARC IR*
with Aspen
annotations

Aspen IR
Generator

ASPEN IR

Aspen IR
Postprocessor

Aspen
application

modelAspen
Performance

Prediction
Tools

Program
characteristics
(flops, loads,
stores, etc.)

Runtime
prediction

Optional feedback for advanced users

Other program
analysis

*IR: Intermediate Representation

*PFU will be initially implemented
as runtime thread

OpenARC RuntimeOpenARC Compiler

Output CodesOpenARC
Front-EndOpenACC

OpenMP 4

NVL-C

C Parser

Directive
Parser

Preprocesso
r

General
Optimizer

OpenARC
Back-End

Kernels &
Host

Program
Generator

Device
Specific

Optimizer

OpenARC
IR

LLVM
Back-End

Extended
LLVM IR

Generator

NVL
Passes

Standard
LLVM

Passes

Kernels for
Target

Devices

Host Program

NVM NVMNVM NVM

NVL Runtime

pmem.io
NVM Library

Executable

OpenARC
Auto-Tuner

Tuning
Configuratio
n Generator

Search
Space
Pruner

CUDA, OpenCL
Libraries

HeteroIR Common Runtime
with Tuning Engine

CUDA
GPU

Altera
FPGA

AMD
GPU

Xeon
Phi

Input C
Programs

Feedback

Run

Run

Oak Ridge National Laboratory

Architectures Thrust: Domain-Specific System on Chip (DSSoC)

