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The goal of the Intelligent Scheduler (IS) is to find the optimal mapping between tasks and the available PEs. 
The IS receives inputs from:
• Ontology
• Application and kernel performance models
• Introspective information collected by the Performance Functional Unit (PFU) thread

IS algorithm: The IS makes informed decisions about which task to run on the available PEs. The process is 
divided into Matching (based on ontology and performance models) and Scheduling (runtime scheduling 
algorithm and dynamic resource allocation). Our solution will provide a scheduling framework into which 
scheduling algorithms can bel plugged in and out.

PE Hardware Abstraction Layer (HAL): The HAL provides a generic PE abstraction to applications and runtime 
software and hide the low-level architecture details of each PE.

Introspective Layer (IL): The IL collects accurate performance and power metrics from each PE while 
executing tasks (Performance Functional Unit thread).

Static Analysis
•Extracts architectural-independent features
•Provides structural knowledge of the analyzed kernels
•Indicates similarity relationships between kernels
•Enables deciding which kind of PEs to be included in the DSSoC design

Dynamic Analysis
•Complements static analysis with pointer analysis and dynamic binding
•Determines how many kernels are executed concurrently and of which kind
•Collects dynamic information (data movement, pre-fetching and stall cycles)
•Enables power consumption measurements and estimation

SoC Design Specification
•Follows a data-driven design space exploration analysis
•Uses PE performance models obtained from Aspen
•Plans to employ robust and well-known numerical optimization techniques
•Refines ontology to add or remove PEs and to modify some of the design parameters

Goal: Enable de-coupling of programmers from the underlying hardware with enough abstraction while still 
being able to utilize the underlying hardware optimally.

Proposed Work: The proposed software ecosystem will provide new levels of performance portability and 
tool-chain interoperability across diverse range of emerging technologies. 

• Provide performance portable programming solutions for the heterogeneous DSSoC.
• Provide integrated performance analysis/debugging solutions for these programming systems.
• Provide a common compiler tool-chain infrastructure for the above solutions.

The proposed solutions are based on 1) the LLVM production compiler infrastructure, 2) ARES HLIR, a high-
level compiler intermediate representation, 3) OpenARC, a research compiler for rapid prototyping of 
directive-based language extensions, and 4) a portable profiling and tracing toolkit for performance 
analysis of parallel programs.

Aspen Modeling Framework: Aspen is a domain-specific language and toolkit for performance modeling:

• Application Models: represent basic resource descriptions and control flow of applications using 
expressions including user-defined parameters and optional traits to describe semantic information

• Abstract Machine Models: represent basic characteristics of systems, such as multiplicity and hierarchy of 
each hardware component, as well as how resources map to costs (e.g., time and power).

COMPASS: a framework for automated performance model generation and performance prediction, which 
generates a structured, parametrized Aspen performance model.

• Static analysis: analyzes an input program and generates a parametrized application performance model
• Aspen performance prediction tools: digest the generated Aspen models, synthesize symbolic equations 

representing application characteristics, and derive various performance predictions

Holistic Modeling for Design, Analysis, and Execution of DSSoCs: the above Aspen frameworks will provide 
an integrated methodology for design, analysis, and execution of DSSoCs across the architecture, 
programming and runtime system, and application ontologies.

Innovative Claims

We propose a multi-level, vertically-integrated strategy to design DSSoCs, 
based on an extension to a cross-cutting Co-Design methodology (Aspen). 
Aspen allows:

 Architecture-independent application models
 Quantitative ontologies for specific domains
 Define PEs and their placement in the DSSoCs
 Performance models to inform configurable compiler infrastructure and 

intelligent runtime scheduling
 Fast design space exploration of DSSoCs
 Design and implement novel embedded Performance API for dynamic 

configuration and performance feedback

Impact

ORNL will provide fundamental methodologies for Co-Design that will enable 
architects and customers to design efficient and high performing DSSoCs
without incurring unreasonable ASIC production or software cost.

 Open source software
 Distribute results and tools to ERI stakeholders
 Pushing technologies to open standards and vendors
 Organize cooperative workshops and 1-to-1 interactions
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Compilers:
• # of floating point instructions
• # of Load/Store operations
• Parental Relation
• Polyhedral Analysis
• Array Summarizations
• Data-flow Analysis
• Dependences
• Control Flow Dependences
• Global accesses
• Passed Arguments
• Data Access Summarization

Profiling/Tracing:
• Functional Memory Access

• Address R/W/RW 
• Functional control flow 
• # Invocation of procedure

• # Statement invocation
• Braches taken / # of 

loops iterations
• Kernel concurrency
• Concurrent kernel types
• Pre-fetching activities
• Stall cycles
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Ontology

Design space exploration:
• # PEs
• What types of PEs
• # PES of each type
• Level of specialization
• PE Position within the chip
• PE performance model in 
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