
This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are
those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.
Distribution Statement A – Approved for Public Release, Distribution Unlimited

:

Lessons from LLVM
• Multiple language front-ends
• Multiple back-end targets

Goal: Build complete compiler
▶ From HDL to Verilog/bitstream

▶ Compile and link to libraries

Early work auto-scheduled Halide programs
▶ For CPUs and GPUs

▶ Now targeting DSP, and hardware

• ASIC, FPGA, and CGRA

• Halide: Declarative, data-parallel expression of image processing algorithms

• Widely used and maintained by industry (Google, FB, Instagram, Adobe)

• Now considering new extensions for video (time varying data)

• Practice what we preach
▶ Use agile practices in the design of our tools and hardware

• Continuous integration, rapid design cycles

• Plan multiple tapeouts / year

▶ Eat our own dogfood

• Use our tools to create prototypes

• Use our prototypes to create new systems

• Run a focused project
▶ Already have taped out our first test chip

• It is all open source
▶ Have a set of large companies supporting this effort
▶ Intel, NVIDIA, Amazon, Facebook, + …

Agile Hardware: Rethinking DSSOC Design
Rapidly Mapping Applications to Specialize Hardware and Doing It Over and Over Again
Clark Barrett, Kayvon Fatahalian, Pat Hanrahan, Mark Horowitz, & Priyanka Raina

CGRA ASICFPGA

Halide-to-CoreIR Compiler

Dataflow / Tensor
autoscheduler

Halide Algorithms Target Perf Model

Target-Specific
Schedule

MagmaHalide Verilog

CoreIR

Chisel

ASICCGRA FPGA

CoreIR Compiler Pass Types

Process different node types
• NamespacePass
• ModulePass
• InstancePasses

Pass manager
• Executes passes in order
• Caches intermediates

Modules

Instances

Generators
Example Passes
• Constant folding
• Dead circuit elimination
• Mux optimization
• Flattening and elaboration
• Clock and power domains
• Backends
• Formal verification
• …

Driving Application Domain: Video Analysis

Cloud-scale video data mining
Image processing and DNN inference on millions of hours of video

Real-time video stream processing
(including fusion of multiple video streams)
Online DNN training/inference, registration, reconstruction, flow/depth estimation

Ultra-low latency/power deployments
Always on sensing/wakeboarding, sense-process-display loops

DSSoC Design

Today Potential Future

IP Based Design

• Get base IP blocks

• Create custom accelerators
– Study applications to accelerate

– Design accelerators

– Create firmware for accelerators

• Create system software
– For IP blocks, and accelerators

• 2-3 years later
– Hope it works

– Hope it solves the right problem

Agile Hardware/Software Design

• Bring rapid learning to hardware
– Tighter coupling between apps/hardware

– Faster design cycles
• Takes many iterations to reach final design

• Don’t start w/ accelerator design
– Start with applications

• Compile to hardware

• Map to programmable substrate (universal)

– Incrementally improve substrate
• While maintaining the programming system

• Latest application can always be mapped

Agile Hardware (AHA!)

• Goal today is to extend working systems
▶ Want to add “cup holder” to complex system

• Cup holder = small addition to complex products with large value

• Must start with working end-to-end system
▶ Create a hardware playground – we created a CGRA

▶ Tools to allow application programmers to use the system

▶ This system won’t be perfect for your task

• Learn from these results to improve most critical features

• Use this system to build accelerators
▶ Quickly generate data on where bottlenecks really are

• Improve software/hardware/tools to remove bottlenecks

How to easily add a cup-
holder to your system

Philosophy – Out Reach

TILETILETILE

TILETILETILE

16 bit bus 1 bit bus

Switch box 16 bit CB
1 bit CB

Input: Domain Specific Languages

Auto-Scheduling Halide to Hardware

// 3x3 separable convolution in Halide
blurx(x,y) = (in(x-1,y) + in(x,y) + in(x+1,y)) / 3;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3;

Functional Halide algorithm description:

Compact language for describing algorithm’s mapping to parallel machine
out.tile(x, y, xi, yi, 256, 32);
out.vectorize(xi, 8);
out.parallelize(y);
blurx.compute_at(xi);
blurx.vectorize(x, 8);

compute output in tiled order
vectorize innermost loop
parallelize loop across cores
loop fusion
vectorize innermost loop

Goal: Prove compiler transformations generate correct code
By: Leveraging Satisfiability Modulo Theories (SMT) solvers for formal checking

1. CoreIR primitives based on SMT-LIB BitVector and Arrays which have a formal
semantics

2. Compiler passes insert additional lemmas that describe the IR transformations,
e.g., state to state mapping

3. Leads to much faster model checking proofs using SMT (e.g. 10 secs. vs 2 hrs.)

Example: Compiling Halide to CoreIR

COSA – CoreIR Symbolic Analyzer

CoreIR : LLVM for Hardware

Stanford University

DNN: Deep Neural Network
FB: Facebook
CPU: Central Processing Unit
GPU: Graphics Processing Unit
ASIC: Application-Specific Integrated Circuit
FPGA: Field Programmable Gate Array

CGRA: Coarse-Grained Reconfigurable Architecture
IP: Intellectual Property
LLVM: Low-Level Virtual Machine
HDL: Hardware Description Language

Architectures Thrust: Domain-Specific System on Chip (DSSoC)

