
Distribution Statement A – Approved for Public Release, Distribution Unlimited

www.darpa.mil

: Hierarchical Identify Verify Exploit (HIVE)

A Hybrid Attributed Generic Graph Library Environment
Andrew Lumsdaine (PI), John Feo (PM) , Giovanni Castellana (PNNL)

Principal features
Extensible and generic SDK with three levels of
graph primitives

Support for static, persistent, dynamic, and
streaming data

Hybrid data model --- relational tables, property
graphs, edge matrices

Extended Abstract Graph Machine to reason about
data flow, data locality, and task scheduling

Control data flow intermediate representation for
code transformation, optimization, and scheduling
with introspection

Abstract runtime model supporting a variety of
memory and execution models

SHAD
SHAD is a C++ library of data structures and
algorithms that hides the complexity of programming
a distributed system.

SHAD implements HAGGLE’s Hybrid Data Model and
supports dynamic insertion and removal of elements
from the data structures.

HAGGLE architecture
HAGGLE is organized in layers. 

SHAD, the Scalable High Performance Algorithms and 
Data structures Library, provides flexible, high-
performance data structures and methods

The Extended Abstract Graph Machine (EAGM)
applies code transformations to optimize data and 
task mappings

The Abstract Runtime System (ARTS) implements 
data movements, task scheduling and control 
operations for the unique hardware features of 
target systems

ARTS
Efficient, a/synchronous resource aware task
scheduling

Global address space to facilitate data movement

Dynamic dependency based synchronization

Light-weight multi-threading

• Active messages

• Asynchronous put/get/AMOs

Flexible distributed coherency protocols to trade-off
data duplication with data movement

Introspection framework to support performance
analysis and adaptive execution

A
b
st

ra
ct

M
ac

h
in

e 
 M

o
d
el

Global Address Space

Tasking/Scheduling

Out-of-Order Engine

Introspection Framework

Light 
weight 

threading
Async. Tasks Active Messages

EAGM
AGM model decomposes graph algorithms into 
processing functions and strict weak ordering of 
work items → algorithm taxonomy 

EAGM model describes hybrid hierarchical algorithms 
using different orderings at different algorithmic 
levels (to match hardware performance)

HAGGLE HARDWARE 
ASKS
Fast context switching: latency tolerance for 
unpredictable data accesses

Fine-grained global address space: no partitioning,
simplifies code development

Efficient synchronization: reduces hotspots with
synchronization intensive workloads

Improve analyst productive while maximizing performance 
on purpose-built systems

Break the owner-compute, superstep programming model 

Shared memory, hybrid data structures; dynamic 
data/task scheduling; latency tolerant data movement

High-productivity, high-performance, SCALABILITY

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of 
the Department of Defense or the U.S. Government.




