
Fully-Autonomous SoC Synthesis using Customizable Cell-Based Synthesizable Analog Circuits PI: Prof. David Wentzloff (UM); Co-PI: Prof. David Blaauw (UM), Prof. Dennis Sylvester (UM), Prof. Ron Dreslinski (UM), Prof. Ben Calhoun (UVA), Matteo Coltella (ARM), David Urguhart (ARM),

Designs Thrust: Intelligent Design of Electronic Assets (IDEA)

The proposed research will develop a fully-autonomous SoC synthesis tool using customizable cell-based synthesizable analog circuits for IDEA Technical Area II. Our approach leverages a differentiating technology to synthesize "correct-byconstruction" Verilog descriptions for both analog and digital circuits to enable a portable, single pass implementation flow.

A typical SoC has many analog components, which have labor intense design processes Design in advanced nodes (<28nm) is getting harder An SoC synthesis tool realizes analog circuit automation is desired

Background

Innovation

A single SoC synthesis tool that produces Verilog descriptions for both analog and digital components This RTL is passed only to the digital chip

layout tool for APR

Impact

This has the advantage of creating a much simpler, unified back-end design flow and improving design portability to advanced technology nodes

Figure 1. Scope of the proposed work, showing its fit into the BAA technical areas.

PREVIOUS WORK & DESIGN GOAL

Our group has been working on synthesizable circuits, such as: ADPLL, TDC, IR UWB Transmitters, DAC, and Serial Links. The following are selected previous synthesized works, and our goal of research

		Analog	Digital
170 µm		Specification	Specification
190 µm		Schematic Entry	
		Simulation	Behavioral Simulation
	imm >		Logic Synthesis
Synthesized UWB TX	Synthesized Serial Link	DRC and LVS	Layout Place and Route
	LVDS	Extraction	↓ Verification
A mm	Receiver DAC Core Clock	Post-layout Simulation	
	Gen,	Propose a fully-autonomo	us SoC synthesis too
Synthesized ADPLL	Synthesized DAC	replace the time consumin developed from the previou	
Synthesized ADFLL	Synthesized DAC	advanced Finfe	

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

l to

PROPOSED RESEARCH

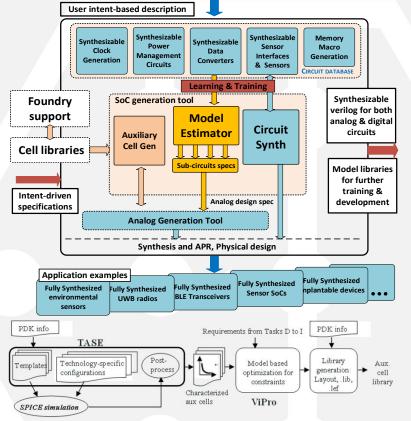


Figure 2. Block diagram of proposed research showing the interactions among tasks and the proposed auxiliary cell generation flow

TASK AND MILESTONES

IDEA TA-2 Sub-task	Proposal Tasks		
TA-2, Sub-task 1: Open parts database	Extending IP-XACT, Synthesizable Circuit Blocks		
TA-2, Sub-task 2: System generator	Extending Socrates Infrastructure, Correct-by-		
	Construction Design		
	Synthesizable Clock Generation		
	Synthesizable Power Management		
	Synthesizable Data Conversion		
TA-2, Sub-task 2: Reference design generator	Synthesizable Sensor Interfaces		
	Synthesizable Thermal Sensors		
	Memory Macro Generation		
	Auxiliary Cell Generation		
TA-2, Sub-task 3: Circuit optimizer	Circuit Block optimization		

UNIVERSITY *d* **VIRGINIA**

UNIVERSITY OF MICHIGAN Distribution Statement A - Approved for Public Release, Distribution Unlimited

