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Case Studies

1. Hardware: Global Controller Verification

• Global controller handles configuration and debugging for a 
Coarse Grained Reconfigurable Array

• Implemented in Verilog
• Translated to CoreIR through the open-source 

VerilogToCoreIR plugin pass for Yosys [13]

Property Result

Always return to ready state assuming counter delay < 10 T

When not in ready state, the counter always decreases T

No underflow in counter F

Read signal high implies the global controller is in read state T

Write signal high implies the global controller is in write state F

2. Software: Design Equivalence Checking

• Verify equivalence between CoreIR designs before and after 
optimization passes

• Fold-constants replaces any subgraph that has a constant 
value with a constant

• Difficult for traditional equivalence checking because the 
number of state elements can change

• Traditional Approach
• Sequential Equivalence Checking

• Our approach
• Leverage additional information from CoreIR
• The pass generates candidate lemmas
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3. Firmware: Verifying Applications

• 4x4 CGRA
• 78,924 variables, including arrays and Bitvectors
• Total of 443,376 bits and 4 arrays

• Application
• 2x1 Convolution
• Mapped to CGRA Primitives
• Place and Route produces bitstream

• Memories encoded using the SMT Theory of Arrays
• CGRA implements linebuffer with 2 memories and complex 

logic
• Load bitstream into CGRA through CoSA using an Explicit 

State Synchronous System
• Verify Sequential Equivalence between original CoreIR

application file and the configured CGRA
• Equivalent in all executions up to 20 cycles (10 cycles of 

valid output)
• Barriers to inductive proof

• Equivalence is not inductive
• Cannot strengthen property with Array equivalence

• CGRA uses 2 9-bit addressed memories for linebuffer
• CoreIR application file implements linebuffer with a 

single 5-bit addressed memory

2x1 Convolution 
Example

Agile Hardware Flow

• Improve hardware design productivity with ideas from software
• Reduce development time
• Make process more ‘agile’
• Improve debugging tools

• Tailored for the image processing domain
• Start with a high-level description language for image 

processing, e.g., Halide [18]
• Targets a Coarse-Grained Reconfigurable Array (CGRA)

• Similar to an FPGA but operates at the word level
• Compose specialized heterogeneous tiles containing 

memories and dedicated processing elements (essentially 
ALUs).

• Uses CoreIR as a representation throughout the flow
• Allows for multiple front-ends such as Yosys [24]
• Inspire design re-use and innovation by providing open-source 

toolchain
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Formal Analysis CoSA

Functionalities and Analyses

Bounded Unbounded Engines

Safety
(e.g., ! ") ✓ ✓ BMC [5], K-Induction 

[19], Interpolation [15]

Finally
(e.g., # ") ✓ ✓ BMC [5], K-Liveness [9]

Liveness
(e.g., !# ") ✓ ✓ BMC [5], K-Liveness [9]

Nested Operators
(e.g., !(" % &)) ✓ ✗ BMC [5]

Analyzers Problem Printers Encoders

PySMT PyCoreIR

CoreIRCVC4 Z3 MathSAT …

CoSA is written in Python and builds on top of PySMT [12], which provides a solver-agnostic 
Python library to interface with SMT solvers. The internal architecture of CoSA is divided into 
the following parts: 
• Transition Systems: defines the internal representation of the model, which is based on a 

hierarchical set of Transition Systems; 
• Analyzers: implements the logic responsible for solving a verification problem. This 

includes BMC engines and liveness checking; 
• Problems: used to define and manage the status of a verification problem; 
• Printers: provides support for trace printing (i.e., textual or VCD format), and model 

translation such as the generation of an SMV file [8]; 
• Encoders: responsible for encoding different model descriptions into the internal 

representation. This includes interpreting CoreIR models, and extracting additional 
information used to optimize the verification process. 

Architecture

Links and References

Additional Input Formats

VAR # Variables Definition
en_clr: BV(1);

INIT # Initial states
en_clr = 0_1;

TRANS # Transition Relation
(en_clr = 1_1) -> (next(en_clr) = 1_1);
(en_clr = 0_1) -> ((self.out > 5_16) <-> (next(en_clr) = 1_1));

# States
I:  reset = 0_1, reset_done = 0_1
S1: reset = 1_1, reset_done = 0_1
S2: reset = 0_1, reset_done = 0_1
S3: reset_done = 1_1

# Transitions
I -> S1
S1 -> S2
S2 -> S3
S3 -> S3

Symbolic Transition System

Example of constraining the clear 
enable (en_clr) signal to be inactive 
until the output reaches 5.

Explicit Transition System

Example of a reset procedure starting 
from the initial states and covering 
both pos-edge and neg-edge active 
registers. The signal reset_done
informs for the correct execution of 
the procedure. 

• Safety Verification: standard invariant verification with proving capabilities
• LTL Verification: support for all temporal operators, with specialized algorithms
• Equivalence Checking: synchronous product between systems under analysis and 

reduction to safety verification
• Lemma Verification: automated check if the model satisfies the lemmas, and integration 

with the verification part
• Clock Abstraction: skips neg-edge steps in case of system with only pos-edge registers
• Synchronous Input Models: multiple models are combined into a synchronous product in 

order to simplify the analysis
• Automated Lemma Extraction: interaction with CoreIR in order to improve the 

equivalence checking performance

Agile Hardware Verification

• The Agile Hardware project has several verification needs
• Functional correctness of the CGRA
• Behavioral correctness of CoreIR designs after optimization 

passes
• Correct mapping of applications to the CGRA

• CoreIR Symbolic Analyzer (CoSA) developed to address these 
challenges and provide open-source model checking

• Optional frontend Verific for full SystemVerilog support

CoSAYosys
(Verilog) CoreIR

Verific
(System-
Verilog)

Open Source

CoSA

Symbolic (LTL) Model Checking

Given a (formal) system description, and its expected behavior 
(Linear Temporal Logic), the CoSA model checker can prove, or 
disprove, if the system is compliant with the expected behavior

System Description 
(Symbolic Transition System)

Expected Behavior 
(LTL Property)

CoSA
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Transition 
Systems
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C=0 C=1 C=2 C=3 C=0

Safety: !(/ = 0), predicate / = 0 should hold 
for every state

Finally: #(1 = 2), predicate 1 = 2 should finally 
hold (at any point in time)

Liveness: !#(1 = 2), predicate 1 = 2 should hold 
infinite many times

Formal Verification Examples (LTL)

Example of a Counter with Reset

The counter counts from 0 to 3, and it can resets to 0 only when 
it has reached the value 3. The variable C represents the count 
value, while R is the enabling of the reset signal
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Verification Challenge

Systems on a Chip (SoCs)
• Growing in size and complexity
• Single chip contains multiple 

cores, caches, accelerators

SoC Verification
• SoCs used in critical applications
• Correctness is essential
• Failures can be extremely costly 

(Intel FDIV: $500M)
• Verification dominates design

Formal Verification has potential to revolutionize verification
• Better than testing: covers all possible cases
• Already used extensively in industry
• But there are many challenges
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