
Distribution Statement A – Approved for Public Release, Distribution Unlimited

www.darpa.mil

QED Bug Detection and Localization
Subhasish Mitra (Stanford)

Electrical Bugs

D
et

ec
te

d
er

ro
r c

ou
nt

(n

or
m

al
iz

ed
 to

 Q
E

D
)

QED

0

0.5

1

1-10 Billion

No-QED

Error detection latency (clock cycles)
0-10K

D
et

ec
te

d
er

ro
r c

ou
nt

(n

or
m

al
iz

ed
 to

 Q
E

D
)

QED

0

0.5

1

1-10 Billion

No-QED

Error detection latency (clock cycles)
0-10K

106X

4X

Intel® 48-Core SCC

No
boot

Pass

48 processor cores

0.9V, 800 MHz

QED unique detect

QED enhanced detect

QED quick detect

Freescale SoC Logic Bug 8-Core Industrial Test Difficult Logic Bugs

Source: Intel

Post-
silicon bug

count

Year

Pre-silicon
verification
inadequate

“Post-silicon cost & complexity rising faster than design cost”

– S. Yerramilli, V.P., Intel

Design Pre-silicon
Verification

Post-silicon
Validation

High
Volume

Fab

Post-Silicon Validation Critical

Detect bugs

Root-cause & fix

Run tests (OS, games)

Debug time:
Months, weeks per bug

Localize bugs

Localization Dominates Cost

Localization

Timeline

Error
occurred

Error detection latency
Ideal ~ 1,000 cycles
Reality ~ Billions cycles

Error
detected

Test
execution

Long Error Detection Latency Challenge

Quick Error Detection

QED
Wide variety

Diversity
Systematic
Automated

Original
Tests
Test 1
Test 2

…
…

Test N

l Error detection latency: guaranteed short

l Coverage: improved

l Software & hardware approaches

QED family
Tests

QED Test 1
QED Test 2

…
…

QED Test N

l Structured and Effective

Ø 109X quicker detection, 4X coverage

l Automatically localize bugs

l No failure reproduction, no simulation

l Broadly applicable:

Cores, uncore, power management, logic &
electrical, accelerators

Quick Error Detection Highlights

QED Transformation Example

...

Core 1 Core 2

<PLC mem[1..N]>

<PLC mem[1..N]>

<PLC mem[1..N]>

<PLC mem[1..N]>

<PLC mem[1..N]>

Core N

<PLC mem[1..N]>

<PLC mem[1..N]>

<PLC mem[1..N]>

A’=A B’=B C’=C

A = B * 2

A’= B’* 2

Check(A==A’)

D’=D E’=E F’=F

G’=G H’=H

E = F * G

E’= F’* G’

Check(E==E’)

H = D + E

H’= D’+ E’

Check(H==H’)

E’=E I’=E

J’=J K’=K

I = E / 2

I’= E’/ 2

Check(I==I’)

Load J ← mem[7]

Load J’← mem[7’]

Check(J==J’)

K = J + 1

K’= J’+ 1

Check(K==K’)

Lock(1,’1)

Store mem[1] ← C

Store mem[1’] ← C’

Unlock(1,1’)

Lock(5,5’)

Store mem[5] ← H

Store mem[5’] ← H’

Unlock(5,5’)

ALL Cores

ALL Threads

<PLC mem[1..N]>

for ALL i,i’

Lock(i)

Lock(i’)

Load X ← mem[i]

Load X’← mem[i’]

Check (X == X’)

Unlock(i’)

Unlock(i)

Symbolic QED and A-QED

l Fully automated logic bug localization
l Pre-silicon and post-silicon bugs
l Formal verification with no manual properties
l Implementation only dependent on ISA
l Scalable: billion-transistor SoCs
l Verify any IP block (accelerators, uncore, etc.)
l High-level language and RTL descriptions

Traditional debug Automatic S-QED
Weeks to months 20 mins. to 7 hours

Long bug traces 3- to 22-cycle bug
traces

0%

20%

40%

60%

80%

100%

0 100 1K 10K 100k 1M

C
um

ul
at

iv
e

bu
gs

 d
et

ec
te

d

Bug Trace Length (cycles)
>10M

Original
Min., Mean, Max.:
722, 1.9M, 11M

Symbolic QED
Min., Mean, Max.:
13, 20, 29

106X

2X

E-QED Results
(min, average, max)

Buggy design module Uniquely identified:
100%

Flip-flop Candidates
(Out of ~1 million)

(5, 18, 26) flip-flops

Area Overhead 2.5% or less

Debug Effort Automatic

Runtime (7, 8.7, 12) hours

Bug localized by formal analysis of signatures

Symbolic QED Results

E-QED

Error detection latency (cycles)

Original QED
15 Billion 9

Interconnection network

Core 1Core 0 Core NCore 2 Core 3

Random Instruction Test Generator

Shared
Caches

Memory
Controllers Accelerators Other uncore

components

l QED enables automatic electrical bug localization
l Targets bugs at all system levels
l No expensive, customized platform

Design RTL

Counter-example

Search all input sequences for
QED check fails

Return bug activation: Minimal
failing QED input sequence

ISA based RTL design and QED module

Counter-
example

High-level language approaches

Counter-
example

Counter-
example

RTL approach

Symbolic QED

A-QED

ISA Specific
QED Module

Bounded Model Checking

High-level
IP Design

Synthesized
High-level IP

Design

Synthesized
High-level

QED Module

RTL
IP Design

ILA Based
QED Module

QED
Symbolic
Execution

Bounded Model
Checking

Bounded Model
Checking

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

Posh Open Source Hardware (POSH)

