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Electrical Bugs
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106X

4X

Intel® 48-Core SCC

No 
boot

Pass

48 processor cores

0.9V, 800 MHz

QED unique detect

QED enhanced detect

QED quick detect

Freescale SoC Logic Bug 8-Core Industrial Test Difficult Logic Bugs

Source: Intel

Post-
silicon bug 

count

Year

Pre-silicon 
verification 
inadequate

“Post-silicon cost & complexity rising faster than design cost” 

– S. Yerramilli, V.P., Intel

Design Pre-silicon
Verification

Post-silicon
Validation

High 
Volume

Fab

Post-Silicon Validation Critical

Detect bugs

Root-cause & fix

Run tests (OS, games)

Debug time:
Months, weeks per bug

Localize bugs

Localization Dominates Cost

Localization

Timeline

Error 
occurred

Error detection latency
Ideal ~ 1,000 cycles
Reality ~ Billions cycles

Error 
detected

Test 
execution

Long Error Detection Latency Challenge

Quick Error Detection

QED
Wide variety 

Diversity
Systematic
Automated

Original 
Tests
Test 1
Test 2

…
…

Test  N

l Error detection latency: guaranteed short

l Coverage: improved

l Software & hardware approaches

QED family 
Tests

QED Test 1
QED Test 2

…
…

QED Test  N

l Structured and Effective

Ø 109X quicker detection, 4X coverage

l Automatically localize bugs

l No failure reproduction, no simulation

l Broadly applicable:

Cores, uncore, power management, logic & 
electrical, accelerators

Quick Error Detection Highlights

QED Transformation Example

...

Core 1 Core 2

<PLC mem[1..N]>

<PLC mem[1..N]>

<PLC mem[1..N]>

<PLC mem[1..N]>

<PLC mem[1..N]>

Core N

<PLC mem[1..N]>

<PLC mem[1..N]>

<PLC mem[1..N]>

A’=A B’=B C’=C

A = B * 2

A’= B’* 2

Check(A==A’)

D’=D E’=E F’=F 

G’=G H’=H 

E = F * G

E’= F’* G’

Check(E==E’)

H = D + E

H’= D’+ E’

Check(H==H’)

E’=E I’=E 

J’=J K’=K

I = E / 2

I’= E’/ 2

Check(I==I’)

Load J ← mem[7 ]

Load J’← mem[7’]

Check(J==J’)

K = J + 1

K’= J’+ 1

Check(K==K’)

Lock(1,’1)

Store mem[1 ] ← C

Store mem[1’] ← C’

Unlock(1,1’)

Lock(5,5’)

Store mem[5 ] ← H

Store mem[5’] ← H’

Unlock(5,5’)

ALL Cores

ALL Threads 

<PLC mem[1..N]>

for ALL i,i’

Lock(i)

Lock(i’)

Load X ← mem[i]

Load X’← mem[i’]

Check (X == X’)

Unlock(i’)

Unlock(i)

Symbolic QED and A-QED

l Fully automated logic bug localization
l Pre-silicon and post-silicon bugs
l Formal verification with no manual properties
l Implementation only dependent on ISA
l Scalable: billion-transistor SoCs
l Verify any IP block (accelerators, uncore, etc.) 
l High-level language and RTL descriptions

Traditional debug Automatic S-QED
Weeks to months 20 mins. to 7 hours

Long bug traces 3- to 22-cycle bug 
traces
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Bug Trace Length (cycles)
>10M

Original
Min., Mean, Max.: 
722, 1.9M, 11M

Symbolic QED
Min., Mean, Max.: 
13, 20, 29 

106X

2X

E-QED Results
(min, average, max)

Buggy design module Uniquely identified: 
100%

Flip-flop Candidates
(Out of ~1 million)

(5, 18, 26) flip-flops

Area Overhead 2.5% or less

Debug Effort Automatic

Runtime (7, 8.7, 12) hours

Bug localized by formal analysis of signatures

Symbolic QED Results

E-QED

Error detection latency (cycles)

Original QED
15 Billion 9

Interconnection network

Core 1Core 0 Core NCore 2 Core 3

Random Instruction Test Generator

Shared 
Caches

Memory 
Controllers Accelerators Other uncore 

components

l QED enables automatic electrical bug localization
l Targets bugs at all system levels
l No expensive, customized platform

Design RTL

Counter-example

Search all input sequences for 
QED check fails 

Return bug activation: Minimal 
failing QED input sequence  

ISA based RTL design and QED module

Counter-
example

High-level language approaches

Counter-
example

Counter-
example

RTL approach

Symbolic QED

A-QED

ISA Specific
QED Module

Bounded Model Checking

High-level 
IP Design

Synthesized 
High-level IP 

Design

Synthesized 
High-level 

QED Module

RTL 
IP Design

ILA Based 
QED Module

QED 
Symbolic 
Execution

Bounded Model 
Checking

Bounded Model 
Checking
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