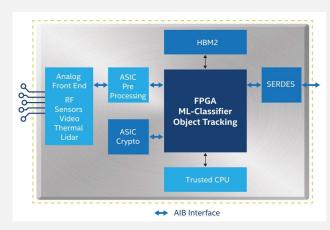


Heterogeneous Integration Enables Next Generation Systems

Intel PI: Sergey Shumarayev

Materials & Integration: Common Heterogeneous Integration and IP Reuse Strategies (CHIPS)


High Performance Systems with Heterogenous Systemin-Package (SIP)

Multi-chiplet integration on a single package enables complex systems with functional building blocks

- Advanced Interface Bus (AIB) high bandwidth, low power die-to-die interface that provides a common interconnect independent of chiplet function or packaging technology
- System level Integration of functions otherwise not possible with monolithic implementation
- Optimize functions with the right process technology (example SiGe for analog, 10nm for digital logic)
- Design reuse of common functions across platforms unlike monolithic implementations that require redesign every generation

Example Heterogenous Integration: Machine Learning on RF Sensor Array Data

The example below shows the potential of heterogeneous integration of multiple functions using chiplets interconnected with the AIB interface.

Now possible: Advanced Multi-technology **Systems in Package**

Image Sources: Intel This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and should not be interpreted as

representing the official views or policies of the Department of Defense or the U.S. Government.

CHIPS

New Technology for Heterogeneous Integration

New high density packaging provides Intel® Stratix® 10 FPGAs and SoCs with Intel EMIB many more wires between dies than standard packaging technology

- Microbumps provide 5-10x IOs/mm² vs. standard flip-chip bumps
- This density is the base of the AIB low power, high bandwidth interface

AIB, Advanced Interface Bus, is a standard interface for data transfers between chiplets

- AIB is a clock forwarded parallel data transfer like DDR DRAM
- AIB is PHY level, OSI Layer 1, with protocols like AXI-4 or PCI Express on top of AIB
- AIB has power and performance advantages over conventional SERDES (Serializer/ Deserializer) interfaces

Metric		AIB	SERDES (typical)
Energy	Smaller is better	1pJ/bit	16pJ/bit
Bandwidth/mm	Larger is better	615Gbps	96Gbps
Latency	Smaller is better	3ns	37ns

The performance figures shown are optimized on Intel technology. Performance varies based on system configuration

OSI Model Layer Application 6 Presentation Session **Transport**

Network Data Link

Physical

Enabling Next Generation Systems

Heterogenous systems are part of Moore's Law, extending integration beyond monolithic devices

Mix best of breed technologies AND achieve near-monolithic bandwidth and power

Use AIB chiplets to build your next generation system

Chiplet **FPGA** Here

Cramming More Components onto Integrated Circuits

GORDON E. MOORE. LIFE FELLOW, IEEE

Package Lid

...It may prove to be more economical to build large systems out of smaller functions, which are separately packaged and interconnected. – 1965

Distribution Statement A - Approved for Public Release, Distribution Unlimited