MRAM-based Deep In-memory Architectures

Naresh Shanbag and Pavan Hamalu¹; Naveen Verma²; Srinivas Banna^{3;} Mike Burkland⁴

Deep In-Memory

Architecture (DIMA)

Ð Ð D D D 0 0 0

여여여여

RMS Workloads

Background & Noise Estimation

Match Filtering

Edge/Line Detectio

Spectral Signature

Neuromorphics

ADNUC

³Global Foundries; ⁴Raytheon Missile Systems

DIMA physical

compilers

Materials & Integration: Framework for Novel Compute (FRANC)

Objective: Integrate PSTT MRAM technology with Deep In-Memory Architectures (DIMAs), simultaneously overcoming memory wall and enabling manufacturability of energy/density-aggressive MRAM.

Technology Approach: Extend DIMA Proof-of-Concept SONIC success to GLOBALFOUNDRIES' platform MRAM. Exploit DIMA statistical compute models to relax MRAM bias margins

 Exploit regularity of DIMA circuits for foundry-platform DIMA compilers Demonstrate DIMA prototypes in foundry PSTT MRAM process (22nm FD-SOI) •Demonstrate DIMA-based systems in RMS defense application

Impacts: > 200X EDP gains ir	1
data-centric DoD workloads,	
10X gains in SW&P margins	

Metrics	SOA	PH1 (sim)	PH2 (bank)	PH3 (syst.)
Energy/MACn (fJ)	6	0.2	0.3	0.4
Throughput (GOPS)	75	500	400	1200
Processing Density (%)	5	25	25	90

Applications and Transition Plan:

 Advanced signal processing capabilities in missile systems Benchmarking to RMS SP technologies & Business Cases

Background and Prior Work

representing the official views or policies of the Department of Defense or the U.S. Government.

Distribution Statement A - Approved for Public Release, Distribution Unlimited