https://github.com/gaps-closure

DARPA GAPS Hands-On Workshop at ERI Summit

Agile Cross-Domain Systems Development Using CLOSURE Toolchain

Program Manager: Mr. Walter Weiss
DARPA BAA HR001119S0017 (GAPS-TA2)

8/20/2020
Co-PI: Mr. Michael Kaplan Co-PI: Dr. Rajesh Krishnan
Scientific Research/Analysis Manager Senior Research Scientist
mkaplan@perspectalabs.com rkrishnan@perspectalabs.com
This material is based upon work supported by the Defense Advanced Research Projects Agency (under
he views, opinions, and/or findi d h f th hi
perspecta 2nd shotl no be nterpreted s representing the offcial views or polcics of e Depariment of Defense of o 2070 Persnecia Labe
LABS the U S government. Distribution Statement "A" (Approved for Public Release, Distribution Unlimited) P

mailto:mkaplan@perspectalabs.com
mailto:mkaplan@perspectalabs.com

Agenda for Today’s Workshop
* Overview Briefing (15 Minutes)

» Background on GAPS Effort
* Overview of CLOSURE technology, tools, and methodology

* CLOSURE Quick Start (15 Minutes)
* How to get started with CLOSURE co-design tools within the XtremelLabs environment
» Review of CLOSURE Language Extensions (CLE)

* Instructor-Led Exercises (30 Minutes)

» Exercise 1: Utilize CLE to express security intent on a simple C program, partition, compile and execute in
emulated environment (code and security intent provided).

+ Exercise 2: Imagine cross-domain developer/auditor needs to change the policy. Developer must
update/replace CLE from exercise 1 and address any refactoring required to satisfy policy.

+ Demonstration on larger application with open-source libraries (10 Minutes)

* Independent participant exercise with instructor assistance (50 Minutes)
» Exercise 3: Rework the example program with a third set of policies, compile and test in emulator

Upon completing this course you will:

* Understand GAPS cross-domain systems development using CLOSURE toolchain
» Gain expertise using emerging (phase 1) GAPS technologies

, perspecta

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

DARPA MTO Guaranteed Architecture for Physical Security (GAPS)

Develop hardware and software architectures with provable security interfaces to @J
physically isolate high risk transactions

Technology Areas

TAl: Components and Interfaces

; o o iy =
"/-'J [I__I ==
Snprine]

TA2: Co-Design Tools

call scanf

mov -9x84(ebp), eax
call gapsGlueTransmit
ret

main:
movl @x2a, ebx
call gaps (1 pum-hm
dd eax
nov cbx, e 19(0!)0)
call printf

TA3: Integration and Validation

Source: DARPA GAPS Proposers Day briefing
’ perspecta

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Meltdown Spectre

Plundering of crypto keys from
ultrasecure SGX sends Intel scrambling
again

Intel's speculative execution flaws go deeper and are harder to fix than we thought.

Source: https://arstechnica.com/information-
technology/2020/06/new-exploits-plunder-crypto-keys-
and-more-from-intels-ultrasecure-sgx/

Perspecta Labs CLOSURE
Started September 2019

Currently 10 months into Phase 1
(Total 3 phases over 4.5years)

GE Research, Mercury Systems, Galois,
Perspecta Labs, Northrop Grumman,
General Dynamics, and Intel on the
program to realize the GAPS vision

https://arstechnica.com/information-technology/2020/06/new-exploits-plunder-crypto-keys-and-more-from-intels-ultrasecure-sgx/

Program Partitioning to Guarantee Physical Isolation of Cross-Domain Transactions

double get a() {
#pragma cle begin ORANGE
static double a = 9.8;
#pragma cle end ORANGE
a+=1;
return a;
3
double get_b() {
#pragma cle begin PURPLE
static double b = 1.8;
#pragma cle end PURPLE
b += b;
return b;
¥
int ewma_main() {
double x;
double y;
#pragma cle begin ORANGE
double ewma;
#pragma cle end ORANGE
for (int i=8; i < 10; i++
x = get_a();
y = get b();
ewma = calc_ewma(x,y);
printf("%f\n", ewma);
}
return @;

¥

Developer annotates original
source code to express cross-
domain security intent

’ perspecta

Enclave 1
(orange)

/ Ul (I

)
» o8

main Hardware

|l &

GAPS Cross-Do

Automated program rewriting and code
generation by CLOSURE tooling supports
correct, concurrent execution of
partitioned program binaries

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Enclave 2
(purple)

Source Code

CLOSURE Co-Design Workflow l Life-Cycle

<

0. Import/Create Cross-Domain program (plain source)

All conflicts

— >
1. Annotate code to express security intent resolvable?
Most developer

) : e N time spent here
2. Conflict Analysis for partitioning feasibility
Description Language (DFDL) spec, Cross-Domain hardware

3. Automated Code Generation, Verification, Build, and Test

 Divides code into per-enclave source trees

« Automates program rewriting and code generation hardware config

» Serialization, marshalling, remote procedure calls (RPCs), Data Format
configurations
« Compiles to LLVM Intermediate Representation for program v Compliance
analysis and verification ~ Verification
* Runs end-to-end test in CLOSURE emulator B Automated
Human in the loop

M perspecta Partitioned 5
Distribution Statement "A" (Approved for Public Release, Distribution Unlimited) ExeCUtableS

Entering the Lab (1/2)

XrR=M=LABS to XtremeLabs, Michael Kaplan | MK
— -

ADD _ Enter your access code and select Add code to add agﬁ Enter code ‘ Add code 3
-

CODE |ab to your account. .

XTR=M=LABS

—_— e = ==

View Labs

After you have entered your lab access code, it will appear in
the My Codes list. To take your labs, select View Labs, then
24 select the course from the navigation bar.

Access

Codes

)

History

EMAIL ID

MY CODES
PASSWORD

Statistics Showing 1to 4 of 4 entries

D Keepmesgnedin

Forgot Password? —

Don't have an accﬂt? Register

fo) Status | Course Name(s) Course Title Expiration Code Used

Manage
Classroom

Support

Privacy & Cookies Download User Guide FAQ

Source: XtremeLabs Source: XtremelLabs

1. Register and log in at: 2. Choose “Access Codes” on toolbar.
https://labs.xtremelabs.io Enter provided code

’ perspecta

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

https://labs.xtremelabs.io/

Entering the Lab (2/2)

MTREM=LABS

= GAPS

View Labs

History

Statistics

o]

Manage
Classroom

~
i

Support

FAQs

Source: XtremeLabs

3. Choose “View Labs” on toolbar and
click “Take Lab” to launch your lab VM

’ perspecta

Lab ID:

Lab Title:

Duration:

Shortcuts to examples

[

Examplel

Virt '
GAPS Cross-Domain Software
Development I
180 minutes o= ~ I
() \
~ — \

gaps-
closure.htm

briefings

CLOSURE github link

Trash

https://www.darpa.mil/news-events/quaranteed-
architecture-for-physical-security-proposers-day
4. GAPS VM accessible in browser for lab
exercises (clicking desktop shortcuts opens
exercises in CLOSURE Development
Environment)

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

https://www.darpa.mil/news-events/guaranteed-architecture-for-physical-security-proposers-day

Navigating the CLOSURE Visual Interface (CVI)

CLOSURE
Plug-Ins
Installed

’ perspecta

examplel.c - exam Y

File Edit Selection View Go Run Terminal Help

EXTENSIONS

isual Studio Code

~ ENABLED

Source: VSCode

7

Terminals show

toolchain output _

0 AEAN SOURCE

1 ANNOTATE
2 AIQALYZE PARTITION CONFLICTS

C/C++ 0.8, 3 AUTOMAGIC
cic+ g4 o ruan G
Microsoft
9a DIVIDE
CLE Highli¢ o, ;ToGEN GEDL. RPCs, IDL, Codecs
C/CH+synt o\ epipy
Perspectal: c
9d VISUALIZE CROSS-DOMAIN CUT
CLE Theme o T
Themes des ~©
Perspectal: of EMULATE
Graphviz (| C/C++: clang build active file
This extension provides GraphV... 14 T
Jodo Pinto) 15
Markdown All ... 320 ®LsM x5 10 dousli.ge;—bé{ {b
All you need to write Markdown... 17 : a J‘; oubte
——— - 18 = D;
~+ RECOMMENDED 1 19 return b;
C++ Intellis... 022 ®232M * 2.5 200}
[&®d C/C++ Intellisense with the hel... 21
austin 22 int ewma main() {
23 double x;
24 double y;
ENS Anrilnl o s ma

PROBLEMS TERMINAL

Build tasks

accessible via

ctrl-shift-b

=1.0;

1: bash

XlioUser@host-vm:~/gaps/build/apps/examples/examplel$

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Annotate and
Refactor
source code

+ 0O @ ~ x

Today’s Example Program

* Program consists of functions get_a and get_b which return static
values a and b. Function ewma main calls get_a and get b and
passes these values to calc_ewma for a computation. The
result is returned to ewma_main and printed to the screen.

» Original program was written without cross-domain security concerns.
We will see how we can use CLOSURE tools to refactor the program
to meet different cross-domain security intents.

Exercise 1 Partitioning Intent

* Variable ainget_a() isin ORANGE and can be shared with PURPLE
* Variablebinget_b() isin PURPLE and cannot be shared
+ Calculated ewma must be available on PURPLE side (for printing)

Exercise 2 Partitioning Intent

* Variable ainget_a() isin ORANGE and can be shared with PURPLE
* Variablebinget_b() isin PURPLE and cannot be shared
+ Calculated ewma must be available on ORANGE side (for printing)

’ perspecta

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

(V=R o T B o T) I S PRI S

WD oo~

(RS T T VR W T R VR R E R N L R L

- W A WD

#include <stdio.h=

double calc ewma(double a, double b) {

}

const double alpha = 08.25;
static double ¢ = 0.0;

c = alpha * (a + b) + (1 - alpha)
return c;

double get af() {

}

static double a = 0.0;
a+= 1;
return a;

double get b() {

}

static double b = 1.0;
b += b;
return b;

int ewma_main() {

}

double x;

double y;

double ewma;

for (int i=0; i = 10; i++) {
x = get_al();
y = get_b(});
ewma = calc_ewma(x,y);
printf("sf\n", ewma);

}

return @;

int main{int argc, char **argv) {

}

return ewma_main();

CLE Concepts

// Precise readings cannot be shared
pragma cle begin ORANGE

double precise_readings[128];

pragma cle end ORANGE

// Return cannot be shared, via inference
double kth_reading(int k) {
return precise_readings[k];

}

// Average can be shared, but human must check
// that only average is shared by this function

#pragma cle begin XDLINKAGE_AVERAGE

double average(double reads[]) {

#pragma cle end XDLINKAGE_AVERAGE
double ret = 0.0;
for (int i=0@; 1i<128; i++) ret += reads[i];
return ret / 128;

Annotated C source using CLE

’ perspecta

label
* level
+ cdf: level — remotelevel
* guarddirective
+ argtaints, codtaints, rettaints

CLE Schema

#pragma cle def ORANGE {"level": "orange"}
#pragma cle def ORANGE_SHARE { \
"level":"orange” \
"cdf": [\

{"remotelevel”: "purple", \
"direction": “egress", \
"guarddirective": {"operation": "allow"}

31}

#pragma cle def XDLINKAGE_AVERAGE
{"level": "orange",\
"cdf": [\

{"remotelevel”: "purple", \

"direction": "bidirectional", \

"guarddirective": {"operation"”: "allow"}, \

"argtaints":
"codtaints":
"pettaints":

}1}

[["ORANGE"]], \

[1, \
["ORANGE_SHARE"] \

CLE Definitions

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

’ perspecta

Instructor-Led CLOSURE
Walkthrough Session...

11

Security Desk Application with Face Recognition

Security Desk

Demonstration at DARPA MTO ERI Summit, August 2020

First name: Daniel

Middle initial:

Last name: Craig

Photograph: ~ Choose...

Check input and click button to submit. Submit

ALLOWED!

11) Source: https://knivesout.movie

sqlite3

6: Anonymous-IDERRTLITT N =)
Service

4: Angnymous-|D EErysesee

5: Name
facil.io,
opencv, dlib 3: Image-Features
De b
7
Allow/
Deny

1,2,7: Web form via browser
* Request: POST name, image
* Response: allow/deny, recognizer

Service

Wl

face_recognition,
scikit-learn

Metadata
Database

Face

Recognition
Model

overlay
This is a demonstration application of Perspecta Labs' CLOSURE toolchain, developed within the
DARPA GAPS program, to facilitate the development and verification of cross-domain systems.
Open Source Technologies: SLOC Directory SLOC-by-Language (Sorted)
* facil.io: web application framework (C, embedded) I5576 facilio ansic=25576
« sqlite3: database (C AP, library) . o
« face_recognition: opencv, dlib, scikit-learn (Python/C API, python3, and C/C++) 478 tDD_d'L r ansic=439, p'_-.-'thnn:39

, perspecta

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

12

https://knivesout.movie/

Exercise 3

Based on the following security intent and objectives, annotate the program on the right such that:

» Variable a in get_a() is in ORANGE and cannot be shared

» Variable b in get_b() is in ORANGE and cannot be shared

+ EWMA must therefore be computed on ORANGE; EWMA is sharable to PURPLE. Calculated
EWMA must be available on PURPLE side (for printing)

We encourage you to try this on your own!

We are here to help with questions and can interact with your VM.

Use the Zoom chat window to ask questions. You can also raise
your hand, and when we recognize you, unmute to talk.

’ perspecta

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

13

Thank you

For additional information, please contact GAPS@darpa.mil

’ perspecta

LABS

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Additional Background

, perspecta

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Overview of CLOSURE

CLOSURE Innovations address key challenges of GAPS TA2

« Language extensions for multiple languages (focus on C/C++ and Golang) for
security annotations

* Automated pointer-aware program partitioning

+ Parametric optimization of program partitioning

* Program rewriting to insert IPC and guards using a Design-by-Contract
methodology

« Constraint-solver based mapping of software to hardware elements drives target-
specific binary generation & optimization

* An emulation capability for development, testing, performance evaluation, and
verification of the partitioned solution

+ Avisual interface for editing, debugging, visualizing source and intermediate
forms, managing the development and optimization workflow, and emulation-
based testing

Global Security Policy Specification (GSPS)

CLOSURE Visual Interface (CVI)

Annotated Source Code with CLI)SURE Language Extensions (CLE)

Multi-Level Security Source Tools (MULES)

Source Analyzer and
Security Verifier

‘ CLE Parser/Preprocessor

Existing LLVM Compiler Front-Ends |

(clang, rgal.'vﬂ':'_J

Compiler and Partitioner/Optimizer (CAPO)

IR-Layer Overhead Graph Rewriter
Partitioning (DbC Guards)

Existing LLVM Linker / Optimizer
(lid, opt)

Multi-target Binary Generation and Orchestration (MBIG)

¥
Existing LLVM Compiler Back-Ends
(ARM, x86, TA1 Architecture)

TA1 Hardware Abstraction Layer APl

| VM-Based Emulation ‘ | TA1 Hardware |

’ perspecta

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

16

GAPS Technical Challenges Addressed by CLOSURE

/~ How to analyze the annotated "\
source to identify conflicts,
and guide the developer
towards compliant programs?

4 How to verify the partitioned)
programs and formally argue
their correctness and security

compliance?

/ How to characterize and \
express cross-domain security
intent in software?

Annotation Language Security Conflict Analysis and

Rﬁacmcatlon / \ Guided Refactoring / wm Verification /
\/

"\ / How to optimize cross-domain \ /~ N\

How to automate portions of programs to reduce overhead H?(\)Ar/ é%&;??tignai?%ftteerm
cross-domain partitioning and and map functionality to target P o
refactoring of programs? hardware topology? GAPS technology adoption?
Cross-Domain Code Generation Tools, Examples, Standards, and
Integer Programming over ’ ’ ’

and Guard Configuration Documentation
R/ / \ Partitioning Constraints / R/ /

’ perspecta 17

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

)

g

Workflow 3. Set up project in CVI for entire cross-domain system development/testing lifecycle

Future tie-in to MDD tools

1. Analyze multi-level Security Source Tools (MULESR

Requirements, 4. Edit Source 5. Invoke CLE : 6. Qenerate/ 7. Implement
- Visualize Program ’
do Design and code and Annotate Preprocessor and N : 9 Prescribed Actions
Modeling with CLOSURE Compiler Front- G ephen 3”;3/ toward Compliant
2 ey Language end to generate P rap "’X] | un . Program Partitions
: : Extensions (CLE) LLVM-IR artition Analysis
Cross-Domain

$
Security Policy [Source-level J Verifier and Partition
\ Lint Checker / Optimizer/Mapper Generator

/ GAPS Emulator (EMU) "\ /~ Multi-target Binary Generation (MBIG)) | "arition Analysis

CLOSURE CLOSURE Visual Interface (CVI }

ﬁ)mpiler and Partitioner/Optimizer (CAP@

. Identifies program-transform
10. Testing and . 9. Packaging 8. Invoke back- ACTICI)_NStneededdto produce
. compliant cross-domain
Performance Evaluation ib ends to generate p

ith Emulated C (programs, libs, partitioned programs

Wi mulated Cross- - executables based + Guarantees all cross-domain
: and configs) per :
Domain Hardware upon enclave accesses occur via guarded
host/enclave send/receive functions

Hardware-in-Loop Tests i/ g configuration (ISA)

M perspecta Needs GAPS Hardware Demonstrated Capability | Future Tooling &

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

» Designed to be toolchain agnostic

CLOSURE Language Extensions (CLE): Preprocessor Current draft available on github
* Language extensions being

and Security Annotations for Variables : _
standardized by GAPS community

| cLe spec |

To partitioner

To downstream
tools

CLOSURE language extensions
enable developers to intuitively
express cross-domain security

concerns using annotations within
application source code. CLOSURE
1} co-design tools, driven by the
annotations, lead to rapid

Developer #pragma cle begin ORANGE development and deployment of
annotates code GpsSensor* gps = new GpsSensor(p, V); cross-domain applications that are
with CLE label #pragma cle end ORANGE k correct-by-construction. /

A Label defines a security type. Associated with the Label is a Level plus constraints on cross-domain data sharing
(cdf). All data marked with a given Level must reside in one enclave. Data in one enclave may have different labels —
some may not be shared while others may be shared, possibly after redaction. The guarddirective within cdf
associated with the Label specifies such data sharing constraints. 10

#pragma cle def ORANGE {"level":"orange",\
Developer defines "cdf": [\
CLE labels and {"remotelevel”:"purple”, \

associated security "direction": "egress", \
policies "guarddirective": { "operation": "allow"}}\

r LABS

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

CLOSURE Language Extensions (CLE): Security Annotations for Functions

Developer #pragma cle def XDLINKAGE_GET_A
specifies {"level":"orange",\
approved CLE "cdf": [\
label taints for {"remotelevel”:"purple"”, \
each portion of "direction": "bidirectional", \
function "guarddirective”: { "operation”: "allow"}, \
"argtaints": [], \
"codtaints": ["ORANGE"], \

"rettaints": ["TAG_RESPONSE_GET_A"] \
3\
11}

#pragma cle begin XDLINKAGE_GET_A
double get_a() {

#pragma cle end XDLINKAGE_GET_A

Developer
annotates
function
declaration with }

CLE label

—
’ perspecta

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

In addition to indicating which
partition to place the function,
function annotations specify the
developer-approved CLE labels for
the input arguments (argtaints),
code body (codtaints), and
return value (rettaints).

The taints indicate to the conflict
analyzer the developer’s intent
with regard to mixing data of
different labels (but same level).

All functions called by CLOSURE
cross-domain RPCs must be
“‘blessed” with an annotation,

otherwise conflict analyzer will
\ reject. /

20

Exercise 1

Based on the following security intent and objectives, annotate the

program on the right such that:

+ Variable a in get_a() is in ORANGE and can be shared with PURPLE

» Variable b in get_b() is in PURPLE and cannot be shared

+ Calculated EWMA must be available on PURPLE side (for printing there)

(CLE label definitions, JSON formatted, placed at top of source file)
#pragma cle def PURPLE {"level":'"purple"}

#pragma cle def ORANGE {"level":"orange",k\

"edf": [\

{"remotelevel" :"purple", \

"direction": "egress", \

"guardhint": { "operation": "allow"}}\
1}

Call to get_a will be wrapped with
CLOSURE RPC to securely marshal
a’ from ORANGE to PURPLE

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

, perspecta

#include <stdio.h>

double calc ewma (double a, double b) {
const double alpha = 0.25;
static double ¢ = 0.0;
c = alpha * (a + b) + (1 - alpha) * c;
return c;

}

%ﬂmle § T e gegln ORANGE

static double a =
#pragma cle end ORANGE

a += 1;

return a;

}

double get b() {
#ipragma cle begin PURPLE
static double b = 1.0;
#fpragma cle end PURPLE
b += b;
return b;

}

int ewma main() {
double x;
double vy;
#fpragma cle begin PURPLE
double ewma;
#fpragma cle end PURPLE
for (int i=0; 1 < 10; i++) {
get_a();
y = get_b();
ewma = calc ewma(x,y);
printf ("$f\n", ewma);
}

return 0;

int main(int argc, char **argv) {
return ewma main();

}

Exercise 2

Based on the following security intent and objectives, annotate the

program on the right such that:

+ Variable a in get_a() is in ORANGE and can be shared with PURPLE

» Variable b in get_b() is in PURPLE and cannot be shared
» Calculated EWMA must be available on ORANGE side (for printing there)

(CLE label definitions, JSON formatted, placed at top of source file)

#pragma cle def PURPLE {"level":

#pragma cle def ORANGE {"level":

"edf": [\

{"remotelevel" :"purple", \
"direction": "egress", \
"guardhint": { "operation":

1}

’ perspecta

"purple"}

"orange",\

"allow"}}\ [VCECNEI R se sl o}

Distribution Statement "A" (Approve

in ‘get_b’ cannot be
shared from PURPLE
to ORANGE.

ewma_main must be
refactored to satisfy
security constraints

ed)

#include <stdio.h>

double calc_ewma (double a, double b) {
const double alpha = 0.25;
static double ¢ = 0.0;
c = alpha * (a + b) +
return c;

}

bl t
#Pragms 1 Eegin ORANGE
static double a =
#pragma cle end ORANGE
a += 1;
return a;

}

(1 - alpha) * c;

double get b() {
#ipragma cle begin PURPLE
static double b = 1.0;
#fpragma cle end PURPLE
b += b;
return b;

}

int ewma main() {
double x;
double vy;
#fpragma cle begin ORANGE
double ewma;
#fpragma cle end ORANGE
for (int i=0; 1 < 10; i++) {
x = get_a();
y = get_b();
ewma = calc_ewma (X,y);
printf ("$f\n", ewma);
}
return 0;

}

int main(int argc, char **argv) {
return ewma main();

}

