
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited (PENDING DISTAR APPROVAL)

© 2020 Perspecta Labs

DARPA GAPS Hands-On Workshop at ERI Summit

Program Manager: Mr. Walter Weiss

DARPA BAA HR001119S0017 (GAPS-TA2)

8/20/2020

Co-PI: Mr. Michael Kaplan

Scientific Research/Analysis Manager

mkaplan@perspectalabs.com

Co-PI: Dr. Rajesh Krishnan

Senior Research Scientist

rkrishnan@perspectalabs.com

https://github.com/gaps-closure

Agile Cross-Domain Systems Development Using CLOSURE Toolchain

This material is based upon work supported by the Defense Advanced Research Projects Agency (under

Contract No HR001119C0106 The views, opinions, and/or findings expressed are those of the author(s)

and should not be interpreted as representing the official views or policies of the Department of Defense or

the U S government. Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

mailto:mkaplan@perspectalabs.com
mailto:mkaplan@perspectalabs.com

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

• Overview Briefing (15 Minutes)

• Background on GAPS Effort

• Overview of CLOSURE technology, tools, and methodology

• CLOSURE Quick Start (15 Minutes)

• How to get started with CLOSURE co-design tools within the XtremeLabs environment

• Review of CLOSURE Language Extensions (CLE)

• Instructor-Led Exercises (30 Minutes)

• Exercise 1: Utilize CLE to express security intent on a simple C program, partition, compile and execute in

emulated environment (code and security intent provided).

• Exercise 2: Imagine cross-domain developer/auditor needs to change the policy. Developer must

update/replace CLE from exercise 1 and address any refactoring required to satisfy policy.

• Demonstration on larger application with open-source libraries (10 Minutes)

• Independent participant exercise with instructor assistance (50 Minutes)

• Exercise 3: Rework the example program with a third set of policies, compile and test in emulator

Agenda for Today’s Workshop

2

Upon completing this course you will:

• Understand GAPS cross-domain systems development using CLOSURE toolchain

• Gain expertise using emerging (phase 1) GAPS technologies

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

DARPA MTO Guaranteed Architecture for Physical Security (GAPS)

3

Perspecta Labs CLOSURE

Started September 2019

Currently 10 months into Phase 1

(Total 3 phases over 4.5years)

GE Research, Mercury Systems, Galois,

Perspecta Labs, Northrop Grumman,

General Dynamics, and Intel on the

program to realize the GAPS visionSource: DARPA GAPS Proposers Day briefing

Source: https://arstechnica.com/information-

technology/2020/06/new-exploits-plunder-crypto-keys-

and-more-from-intels-ultrasecure-sgx/

https://arstechnica.com/information-technology/2020/06/new-exploits-plunder-crypto-keys-and-more-from-intels-ultrasecure-sgx/

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Program Partitioning to Guarantee Physical Isolation of Cross-Domain Transactions

4

Enclave 2

(purple)

Enclave 1

(orange)

Developer annotates original

source code to express cross-

domain security intent

Automated program rewriting and code

generation by CLOSURE tooling supports

correct, concurrent execution of

partitioned program binaries

GAPS Cross-Domain Hardware

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

0. Import/Create Cross-Domain program (plain source)

1. Annotate code to express security intent

2. Conflict Analysis for partitioning feasibility

3. Automated Code Generation, Verification, Build, and Test
• Divides code into per-enclave source trees

• Automates program rewriting and code generation
• Serialization, marshalling, remote procedure calls (RPCs), Data Format

Description Language (DFDL) spec, Cross-Domain hardware

configurations

• Compiles to LLVM Intermediate Representation for program

analysis and verification

• Runs end-to-end test in CLOSURE emulator

CLOSURE Co-Design Workflow
plain

annotated

refactored

All conflicts

resolvable?

divvied1 divviedn

no

yes

gedl.json

partitioned1 partitionedn

serialization, RPCs, hardware config

Automated

Human in the loop

Source Code

Life-Cycle

topology.json

Most developer

time spent here

Compliance

Verification

Partitioned

Executables

5

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Entering the Lab (1/2)

6

1. Register and log in at:

https://labs.xtremelabs.io

2. Choose “Access Codes” on toolbar.

Enter provided code

Source: XtremeLabs Source: XtremeLabs

https://labs.xtremelabs.io/

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Entering the Lab (2/2)

7

3. Choose “View Labs” on toolbar and

click “Take Lab” to launch your lab VM
4. GAPS VM accessible in browser for lab

exercises (clicking desktop shortcuts opens

exercises in CLOSURE Development

Environment)

Shortcuts to examples

CLOSURE github link

Source: XtremeLabs Source: XtremeLabs, DARPA GAPS

https://www.darpa.mil/news-events/guaranteed-

architecture-for-physical-security-proposers-day

https://www.darpa.mil/news-events/guaranteed-architecture-for-physical-security-proposers-day

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Navigating the CLOSURE Visual Interface (CVI)

8

CLOSURE

Plug-Ins

Installed

Build tasks

accessible via

ctrl-shift-b

Annotate and

Refactor

source code

Terminals show

toolchain output

Source: VSCode

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)
Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Today’s Example Program

9

• Program consists of functions get_a and get_b which return static

values a and b. Function ewma_main calls get_a and get_b and

passes these values to calc_ewma for a computation. The

result is returned to ewma_main and printed to the screen.

• Original program was written without cross-domain security concerns.

We will see how we can use CLOSURE tools to refactor the program

to meet different cross-domain security intents.

Exercise 1 Partitioning Intent

• Variable a in get_a() is in ORANGE and can be shared with PURPLE

• Variable b in get_b() is in PURPLE and cannot be shared

• Calculated ewma must be available on PURPLE side (for printing)

Exercise 2 Partitioning Intent

• Variable a in get_a() is in ORANGE and can be shared with PURPLE

• Variable b in get_b() is in PURPLE and cannot be shared

• Calculated ewma must be available on ORANGE side (for printing)

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

• label

• level

• cdf : level → remotelevel

• guarddirective

• argtaints, codtaints, rettaints

CLE Concepts

10

// Precise readings cannot be shared
pragma cle begin ORANGE
double precise_readings[128];
pragma cle end ORANGE

// Return cannot be shared, via inference
double kth_reading(int k) {

return precise_readings[k];
}

// Average can be shared, but human must check
// that only average is shared by this function

#pragma cle begin XDLINKAGE_AVERAGE
double average(double reads[]) {
#pragma cle end XDLINKAGE_AVERAGE

double ret = 0.0;
for (int i=0; i<128; i++) ret += reads[i];
return ret / 128;

}

#pragma cle def ORANGE {"level": "orange"}
#pragma cle def ORANGE_SHARE { \

"level":"orange” \
"cdf": [\

{"remotelevel": "purple", \
"direction": “egress", \
"guarddirective": {"operation": "allow"}
}]}

#pragma cle def XDLINKAGE_AVERAGE
{"level": "orange",\
"cdf": [\

{"remotelevel": "purple", \
"direction": "bidirectional", \
"guarddirective": {"operation": "allow"}, \
"argtaints": [["ORANGE"]], \
"codtaints": [], \
"rettaints": ["ORANGE_SHARE"] \
}]}

CLE Schema

Annotated C source using CLE CLE Definitions

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Instructor-Led CLOSURE

Walkthrough Session…

11

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Security Desk Application with Face Recognition

12

Lookup
Service

Metadata
Database

Face
Recognition

Model

Security
Desk Web

Application
Photo Recognizer

Service

1

2

Allow/
Deny

Name

3: Image-Features

4: Anonymous-ID

5: Name

6: Anonymous-ID

1,2,7: Web form via browser
• Request: POST name, image
• Response: allow/deny, recognizer

overlay

7
face_recognition,
scikit-learn

sqlite3

facil.io,
opencv, dlib

Cross-Domain Partitioning Intent:
Isolate face recognition from rest of

system

Open Source Technologies:
• facil.io: web application framework (C, embedded)
• sqlite3: database (C API, library)
• face_recognition: opencv, dlib, scikit-learn (Python/C API, python3, and C/C++)

Source: https://knivesout.movie

https://knivesout.movie/

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Exercise 3

13

Based on the following security intent and objectives, annotate the program on the right such that:

• Variable a in get_a() is in ORANGE and cannot be shared

• Variable b in get_b() is in ORANGE and cannot be shared

• EWMA must therefore be computed on ORANGE; EWMA is sharable to PURPLE. Calculated

EWMA must be available on PURPLE side (for printing)

We encourage you to try this on your own!

We are here to help with questions and can interact with your VM.

Use the Zoom chat window to ask questions. You can also raise

your hand, and when we recognize you, unmute to talk.

Thank you

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

For additional information, please contact GAPS@darpa.mil

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Additional Background

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Overview of CLOSURE

16

CLOSURE innovations address key challenges of GAPS TA2
• Language extensions for multiple languages (focus on C/C++ and Golang) for

security annotations

• Automated pointer-aware program partitioning

• Parametric optimization of program partitioning

• Program rewriting to insert IPC and guards using a Design-by-Contract

methodology

• Constraint-solver based mapping of software to hardware elements drives target-

specific binary generation & optimization

• An emulation capability for development, testing, performance evaluation, and

verification of the partitioned solution

• A visual interface for editing, debugging, visualizing source and intermediate

forms, managing the development and optimization workflow, and emulation-

based testing

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

GAPS Technical Challenges Addressed by CLOSURE

How to characterize and

express cross-domain security

intent in software?

Annotation Language

Specification

How to verify the partitioned

programs and formally argue

their correctness and security

compliance?

Program Verification

How to analyze the annotated

source to identify conflicts,

and guide the developer

towards compliant programs?

Security Conflict Analysis and

Guided Refactoring

How to automate portions of

cross-domain partitioning and

refactoring of programs?

Cross-Domain Code Generation

and Guard Configuration

How to optimize cross-domain

programs to reduce overhead

and map functionality to target

hardware topology?

Integer Programming over

Partitioning Constraints

How to create an ecosystem

for developers and foster

GAPS technology adoption?

Tools, Examples, Standards, and

Documentation

17

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

18

1. Analyze

Requirements,

do Design and

Modeling

2. Specify

Cross-Domain

Security Policy

Future tie-in to MDD tools

3. Set up project in CVI for entire cross-domain system development/testing lifecycle

CLOSURE Visual Interface (CVI)

4. Edit Source

code and Annotate

with CLOSURE

Language

Extensions (CLE)

5. Invoke CLE

Preprocessor and

Compiler Front-

end to generate

LLVM-IR

Source-level

Lint Checker

Multi-level Security Source Tools (MULES)

* Partition Analysis

• Identifies program-transform

ACTIONS needed to produce

compliant cross-domain

partitioned programs

• Guarantees all cross-domain

accesses occur via guarded

send/receive functions

6. Generate /

Visualize Program

Dependency

Graph and Run

Partition Analysis*

Compiler and Partitioner/Optimizer (CAPO)

Verifier and Partition

Optimizer/Mapper

7. Implement

Prescribed Actions

toward Compliant

Program Partitions

9. Packaging

(programs, libs,

and configs) per

host/enclave

Multi-target Binary Generation (MBIG)

8. Invoke back-

ends to generate

executables based

upon enclave

configuration (ISA)

GAPS Emulator (EMU)

10. Testing and

Performance Evaluation

with Emulated Cross-

Domain Hardware

Hardware-in-Loop Tests

Demonstrated Capability Future Tooling

CLOSURE

Workflow

Needs GAPS Hardware

Code

Generator

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

CLOSURE Language Extensions (CLE): Preprocessor

and Security Annotations for Variables

19

• Designed to be toolchain agnostic

• Current draft available on github

• Language extensions being

standardized by GAPS community

CLOSURE language extensions

enable developers to intuitively

express cross-domain security

concerns using annotations within

application source code. CLOSURE

co-design tools, driven by the

annotations, lead to rapid

development and deployment of

cross-domain applications that are

correct-by-construction.

#pragma cle def ORANGE {"level":"orange",\
"cdf": [\
{"remotelevel":"purple", \
"direction": "egress", \
"guarddirective": { "operation": "allow"}}\

] }

Developer defines

CLE labels and

associated security

policies

#pragma cle begin ORANGE
GpsSensor* gps = new GpsSensor(p, v);
#pragma cle end ORANGE

Developer

annotates code

with CLE label

A label defines a security type. Associated with the label is a level plus constraints on cross-domain data sharing

(cdf). All data marked with a given level must reside in one enclave. Data in one enclave may have different labels –

some may not be shared while others may be shared, possibly after redaction. The guarddirective within cdf
associated with the label specifies such data sharing constraints.

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

CLOSURE Language Extensions (CLE): Security Annotations for Functions

20

#pragma cle def XDLINKAGE_GET_A
{"level":"orange",\
"cdf": [\
{"remotelevel":"purple", \
"direction": "bidirectional", \
"guarddirective": { "operation": "allow"}, \
"argtaints": [], \
"codtaints": ["ORANGE"], \
"rettaints": ["TAG_RESPONSE_GET_A"] \

} \
] }

#pragma cle begin XDLINKAGE_GET_A
double get_a() {
#pragma cle end XDLINKAGE_GET_A
…
}

Developer

annotates

function

declaration with

CLE label

Developer

specifies

approved CLE

label taints for

each portion of

function

In addition to indicating which

partition to place the function,

function annotations specify the

developer-approved CLE labels for

the input arguments (argtaints),

code body (codtaints), and

return value (rettaints).

The taints indicate to the conflict

analyzer the developer’s intent

with regard to mixing data of

different labels (but same level).

All functions called by CLOSURE

cross-domain RPCs must be

“blessed” with an annotation,

otherwise conflict analyzer will

reject.

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Exercise 1

21

#include <stdio.h>

double calc_ewma(double a, double b) {

const double alpha = 0.25;

static double c = 0.0;

c = alpha * (a + b) + (1 - alpha) * c;

return c;

}

double get_a() {

static double a = 0.0;

a += 1;

return a;

}

double get_b() {

static double b = 1.0;

b += b;

return b;

}

int ewma_main() {

double x;

double y;

double ewma;

for (int i=0; i < 10; i++) {

x = get_a();

y = get_b();

ewma = calc_ewma(x,y);

printf("%f\n", ewma);

}

return 0;

}

int main(int argc, char **argv) {

return ewma_main();

}

Based on the following security intent and objectives, annotate the

program on the right such that:
• Variable a in get_a() is in ORANGE and can be shared with PURPLE

• Variable b in get_b() is in PURPLE and cannot be shared

• Calculated EWMA must be available on PURPLE side (for printing there)

#pragma cle def PURPLE {"level":"purple"}

#pragma cle def ORANGE {"level":"orange",\

"cdf": [\

{"remotelevel":"purple", \

"direction": "egress", \

"guardhint": { "operation": "allow"}}\

] }

#pragma cle begin ORANGE

#pragma cle end ORANGE

#pragma cle begin PURPLE

#pragma cle end PURPLE

#pragma cle begin PURPLE

#pragma cle end PURPLE

(CLE label definitions, JSON formatted, placed at top of source file)

Call to get_a will be wrapped with

CLOSURE RPC to securely marshal

‘a’ from ORANGE to PURPLE

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Exercise 2

22

#include <stdio.h>

double calc_ewma(double a, double b) {

const double alpha = 0.25;

static double c = 0.0;

c = alpha * (a + b) + (1 - alpha) * c;

return c;

}

double get_a() {

static double a = 0.0;

a += 1;

return a;

}

double get_b() {

static double b = 1.0;

b += b;

return b;

}

int ewma_main() {

double x;

double y;

double ewma;

for (int i=0; i < 10; i++) {

x = get_a();

y = get_b();

ewma = calc_ewma(x,y);

printf("%f\n", ewma);

}

return 0;

}

int main(int argc, char **argv) {

return ewma_main();

}

Based on the following security intent and objectives, annotate the

program on the right such that:
• Variable a in get_a() is in ORANGE and can be shared with PURPLE

• Variable b in get_b() is in PURPLE and cannot be shared

• Calculated EWMA must be available on ORANGE side (for printing there)

#pragma cle def PURPLE {"level":"purple"}

#pragma cle def ORANGE {"level":"orange",\

"cdf": [\

{"remotelevel":"purple", \

"direction": "egress", \

"guardhint": { "operation": "allow"}}\

] }

#pragma cle begin ORANGE

#pragma cle end ORANGE

#pragma cle begin PURPLE

#pragma cle end PURPLE
(CLE label definitions, JSON formatted, placed at top of source file)

#pragma cle begin ORANGE

#pragma cle end ORANGE

Unresolvable Error: ‘b’

in ‘get_b’ cannot be

shared from PURPLE

to ORANGE.

ewma_main must be

refactored to satisfy

security constraints

