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AFRL SENSORS DIRECTORATE
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AFRL/RY Mission
− Lead the discovery and 

development of future capabilities 
providing integrated Intelligence, 
Surveillance, and Reconnaissance 
(ISR), combat identification, and 
spectrum warfare effects

AFRL/RY Vision
− Enable ubiquitous Situation 

Awareness and Spectrum 
Dominance for Global Vigilance, 
Reach, and Power

Distribution Statement A - Approved for public release. Distribution is unlimited.
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ENDURING CHALLENGES
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“forces that can deploy, 
survive, operate, 
maneuver, and 
regenerate in all domains 
while under attack” 

National Defense 
Strategy

“new operational 
concepts and capabilities 
to win without assured 
dominance in air, space, 
and cyberspace 
domains” 

National Security 
Strategy

“be able to strike diverse 
targets inside adversary 
air and missile defense 
networks”

National Defense 
Strategy

“capabilities to penetrate 
the highly contested 
environment [and] deliver 
effects from stand-off 
ranges … to counter the 
A2/AD strategy”

Air Force Air Superiority 
2030 Flight Plan

Protect Aircrews 
and Aircraft

Dominate Airborne 
Threats

Defeat Integrated 
Air Defense 

Systems

Hold Critical Mobile 
Targets at Risk
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STRATEGIC CAPABILITY AREAS FOR USAF

Global Persistent Awareness
“Support continuous and timely knowledge of adversaries throughout the operating 
environment via distributed sensing across all domains”

Resilient Information Sharing
“Coordinate across all Joint Force assets through assured communications and precise 
position, navigation and timing resilient to any denial methods”

Rapid Effective Decision-Making
“Increase the speed of battlespace understanding and decision-making through 
automation to act faster than any adversary”

Complexity, Unpredictability, and Mass
“Overwhelm adversaries with complexity, unpredictability and numbers through a 
collaborative and autonomous network of systems and effects”

Speed and Reach of Disruption and Lethality
“Rapidly disrupt and neutralize dynamic and mobile targets using new methods to attack 
with speed and global reach”

6
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GLOBAL PERSISTENT AWARENESS
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Pervasive Sensing Grid
Vision: Penetrating ISR platforms 

detect, track, and share time 
critical intelligence to enable battle 
management

Key Enabling Technologies:
Attritable Platforms
Software Defined Payloads

Distribution Statement A - Approved for public release. Distribution is unlimited.
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GLOBAL PERSISTENT AWARENESS
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Expanding Spectrum Coverage
Vision: Staring receivers capable of 

detecting hard to detect signals 
over wide frequency ranges

Key Enabling Technologies:
Wideband Components
Compressed Sensing

Distribution Statement A - Approved for public release. Distribution is unlimited.
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GLOBAL PERSISTENT AWARENESS
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Passive Sensing and Wideband Digital Beamforming
Vision: Dynamically utilize

environmental illuminators 
for passive surveillance

Airborne 
Receiver

Ground Targets

Air Targets

Ground Illuminator

Airborne 
Illuminator

Key Enabling Technologies:
Digital-at-the-Element RF
Illumination Selection Manager

Distribution Statement A - Approved for public release. Distribution is unlimited.
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SUMMARY

• Significant operational challenges in contested operations
• Pervasive spectrum access critical to future military success
• Enduring challenges and strategic capabilities provide frameworks to guide 

advanced sensor developments
• Seeking advanced technologies that can evolve with agile threats

• Performance tailored for operational impact
• Techniques to consume spectrum and drive decisions
• Enabling components and devices to improve size and performance

10
Ubiquitous Situation Awareness and Spectrum Dominance
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Energy per cycle per pole in a filter

Analog

Digital

𝐸𝐸 ≥ 8kT � DR

𝐸𝐸 ∝ log2 DR

SIGNAL PROCESSING ENERGY

E. A. Vittoz, “Future of analog in the VLSI environment,” ISCAS 1990

4
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TODAY’S PERSPECTIVE

• Low bit precision
• Analog ultimately approaches 

digital (digital ≈ 1-bit analog)

• Moderate bit precision
• Analog can be about one 

order of magnitude more 
efficient than digital

• High bit precision
• Analog tends to be inferior 

beyond 8 bits

Bit precision (B)
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Technology 
scaling

Digital

Analog
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~28 nm CMOS
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OBSERVATIONS

• Data movement and memory access are more expensive than compute and 
often limit the efficiency of modern systems

• Why bother with analog signal processing?

• Two opportunities
• Reduction of data at the analog interface
• Reduction of data movement for massively parallel compute 

7
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INPUT DATA DELUGE

• Many modern systems are fed with complex or high-dimensional inputs
• Most data is “destroyed” via computation and data movement
• Up-front analog data reduction can reduce backend energy consumption 

8

Decisions

Memory

Compute

Data reduction

Large arrays
Complex waveforms
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Distribution Statement Pending

EXAMPLE: AUDIO FEATURE EXTRACTION
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Spectrogram of “Yes”
Speech ≈39 bit/sec

Villamizar, TCAS1, 2021

lower resolution 
ADC

Distribution Statement A - Approved for public release. Distribution is unlimited.
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OPPORTUNITY FOR MANY APPLICATIONS

• End-to-end training with analog in the loop 
• Neural network loss must be differentiable with respect to analog parameters
• “Differentiable signal processing” (Engel, ICLR 2020) 

10

Neural 
network

Memory

Compute

Data reduction

Training algorithm
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ANALOG COMPUTE?

• Does it ever make sense to go back to analog for compute?
• Forgotten fact: We routinely go back to analog during memory readout

• For example, SRAM sense amplification

11

Decisions

Memory

Compute

Data reduction
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MIXED-SIGNAL COMPUTE FOR DNNS

• Reduced data movement by co-locating 
massively parallel compute with memory

• Many incarnations (SRAM, RRAM, etc.)
• Key issues include flexibility, array utilization

12
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THE BATTLE OF ANALOG VERSUS DIGITAL

13

[Bankman, ISSCC 2018]
28 nm CMOS
478 1b-GOPS

532 1b-TOPS/W

[Knag, VLSI 2020]
10 nm CMOS
163 1b-GOPS

269 1b-TOPS/W
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SUMMARY

In the context of modern systems, analog processing can be intriguing for:

1. Mitigating data deluge at the system input
• Many known solutions (some as “simple” as analog beamforming)
• Many unexplored opportunities in coupling front-end with ML backend
• Challenge is that most concepts are one-offs (not generalizable)

2. Reducing data movement in “embarrassingly parallel” compute loads
• Literature shows promising results for small demonstrators
• Challenge lies in integration with (somewhat) flexible compute platform
• And the digital folks will fight back…

14
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Signal Processing in Neural Networks (SPiNN) 

End-to-End Autoencoder Communications with 
Interference Suppression 

Kemal Davaslioglu, Intelligent Automation Inc., Senior Research Scientist
Tugba Erpek, Intelligent Automation Inc., Lead Scientist

Yalin Sagduyu, Intelligent Automation Inc., Director

This research was developed with funding from the Defense Advanced Research 
Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and 
should not be interpreted as representing the official views or policies of the 
Department of Defense or the U.S. Government.

Distribution Statement A - Approved for public release. Distribution is unlimited.



End-to-End Autoencoder Communications 
with Interference Suppression 

• Motivation: Next-generation communication systems need to be optimized beyond conventional 
communication designs that are typically based on simple analytical models or expert knowledge. 

• Support high reliability and high rate subject to
complex channel and interference effects.

• Jointly optimize the transmitter and receiver 
operations w.r.t channel and interference conditions.

• Data-driven Solution: Autoencoder (AE) based                                                                               
communication system for which the transmitter and 
receiver are represented as deep neural networks. 

• Adapts to channel and interference dynamics. 

• Conclusion: Major improvement demonstrated in terms                  
of reliability  and interference suppression compared to 
conventional communication schemes. 

• Suppress >30 dB multi-symbol interference.

2
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System Model & Channel Adaptation
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 The encoder at the transmitter and the decoder at the 
receiver are represented as deep neural networks to 
adapt to spectrum (channel and interference) dynamics.

 AE system is trained end-to-end using interference                                                                                
training and randomized smoothing to mitigate the                                                                                      
effects of interference (jamming). 

 AE system outperforms the conventional methods under different channel conditions. 
 The 𝑛𝑛 ch-use determines the redundancy for channel coding purposes. 

AWGN AWGN + Channel impairments 
(phase offset = 10 deg, 
frequency offset = 30 Hz)

Distribution Statement A - Approved for public release. Distribution is unlimited.



Hardware and Data Limitations
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 Quantization is needed for embedded hardware implementation on FPGA or embedded GPU.
 Compared to floating point implementation, model size and memory usage are reduced while

maintaining the BER and inference time.

 Model size  Inference time

 What if training data is limited?
● Augment the training with 

Generative Adversarial Network
(GAN) to add synthetic data and 
improve the training accuracy.

Distribution Statement A - Approved for public release. Distribution is unlimited.



Training Data Augmentation with GAN
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 Optimize the BER 
over the # of synthetic 
data samples (2 
bits/channel use).

 GAN learns the distribution of the real data over time and generates the synthetic data.

JS: Jensen–
Shannon 
divergence

100 real + synthetic samples 1000 real + synthetic samples

Distribution Statement A - Approved for public release. Distribution is unlimited.



Interference (Jamming) Suppression
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Mitigate both channel and interference (jamming) effects 
 Autoencoder with interference mitigation using Randomized Smoothing

 Uses Gaussian data augmentation during training and increases 
robustness against perturbations introduced by noise and interference.

Randomized 
Smoothing

Error Vector Magnitude (EVM) measures how far 
the points are from the ideal locations at the RX as 
a result of impairments such as phase noise.

BER and EVM results are for 4 ch-use. 

Distribution Statement A - Approved for public release. Distribution is unlimited.



Training for Interference Suppression
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 The maximum tolerated jamming-to-signal-ratio 
(JSR) to achieve BER ≤ 1e-2 at a given SNR 
is compared for 4 ch-use.

 AE suppresses >30 dB multi-symbol 
interference with respect to conventional 
communications.
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Interference training Randomized Smoothing 12-symbol interference1-symbol
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EMBEDDED AI AT THE 
EDGE FOR 
COMMUNICATIONS 
IN NONSTATIONARY 
CHANNELS AND BUSY 
SPECTRUM

This research was developed with funding from the Defense Advanced Research 
Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and 
should not be interpreted as representing the official views or policies of the 
Department of Defense or the U.S. Government.
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I. MATEI, J. DE KLEER
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A CHALLENGE IN COMMUNICATIONS 
AND SENSING
• Communications and sensing in nonstationary & busy environments require fast / 

smart decisions at the edge
• HF Ionospheric channels provide beyond line of site capabilities, but bandwidth and 

reliability have historically limited its usage

5

The advent of 3rd wave AI methods allows exploitation of prior insights (e.g., physics, signal 
structure). Combined with efficient ML architectures and training are well-suited for edge 

processing with relatively little training to address these challenges.

Challenging channel: Refraction 
from Multiple layers and polarization 
splitting in ionosphere creates multiple 
time-varying modes that recombine at 
the receiver, causing signal fading

Busy spectrum: Ability to sense 
manmade and natural 
interference from 1000s of km 
away created dense spectrum 
with nonstationary characteristics

Author’s Own

Author’s Own

Author’s Own
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HIGH-NOTE ARCHITECTURE
HIGH-FREQUENCY COMMUNICATIONS NEURAL NET OPTIMIZATION AND TRAINING ENGINE

• Use NNs to demodulate symbols in time-varying frequency-selective HF channels 
more accurately than achievable by state-of-the-art adaptive equalizers

• Exploit signal structure informed learning methods to identify and cancel interferers

6
Author’s Own
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SPECTRUM LEARNING ARCHITECTURES:
COMPARING PURE NN AND HYBRID APPROACHES
• Hybrid approach: Neural

Annotated Signature Pursuit
• Combines matching pursuit with a

lightweight neural network to label
the selected atoms

• Domain knowledge is encoded in signature 
dictionary to minimize training data 
requirements

• Pure neural network approach: fully 
convolutional U-net
• Single neural network maps received 

signal directly to estimated SOI
• Replaces iterative matching pursuit 

operation with cascaded convolution 
operations

• Enabled by novel loss function which 
imposes domain knowledge during training 
process

7

Matching pursuit step requires 
iterative selection of >100 atoms: 
limits ability to parallelize processing

TConv 1

TConv N

Conv 1

Conv N

……
Rx Signal SOI Estimate

Only iterative 
operation is sequential 
application of ~10 
layers: convolutions 
within each layer can 
be efficiently 
parallelized

Matching 
Pursuit

Neural 
Network 
Classifier

Reconstruct 
Interference

Reconstruct 
SOI

Rx
Signal

SOI
Estimate

Green = neural network-
based component

Author’s Own
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SPECTRUM LEARNING ARCHITECTURES:
RESULTS: INTERFERENCE (LIGHTNING) MITIGATION

• Interference removal successfully recovers low BER even when starting from negative 
SIR, despite overlap with SOI

• Achieved using single-channel Rx signal (no spatial / polarimetric DOFs)
8

Original signal      (1 OFDM symbol )
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High-
NOTE

After filtering: –22.6 dB SIR After High-NOTE+filtering: +12.8 dB SIR

JSR ~ 35 dB

BER vs. Eb/Io

SIR gains of ~35 dB demonstrated for signal with structured 
interferer (lightning)

~35 dB improvement 
validated in BER Monte 
Carlo simulation results

Author’s Own
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HF CHANNEL LEARNING – ARCHITECTURE

• High-NOTE uses NNs to demodulate symbols in 
time-varying frequency-selective HF channels 
• Goal: improve on performance of state-of-the-art 

adaptive equalizers.
• We trained NN-based symbol decoders for a 

wideband HF channel
• Two NN architectures explored: memoryless (dense 

NN) and with memory (LSTM-based RNN)
• Channel estimation achieved using a hybrid 

transceiver model
• Learn the multipath delays, gains, and Doppler shifts 

using gradient descent algorithms
• Use sparsity constraints (e.g., L1 regularization) on 

gains to reduce the model complexity
• A NN-based predictive model is updated online 

and used for estimating future channel behavior
9

Channel Type Multipath 
Spread

Fading 
Bandwidth 
(Doppler 
Spread)

Stationary AWGN 
Channel

0 0

HF Moderate 
Conditions**

1 msec 0.5 Hz

** - Source: Recommendation ITU-R F.520, “Use 
of high frequency ionospheric channel simulators.”

Author’s Own
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HF CHANNEL LEARNING – RESULTS

• For stationary channels High-NOTE meets the fundamental theoretic performance bounds
• In narrowband time varying channels with single receiver, High-NOTE improves BER equivalent to 

6dB improvement in SNR
• In wideband time varying conditions High-NOTE improves performance dramatically over 

standard equalization

10

Stationary HF Multipath Time-varying HF Multipath

4 6 8 10 12 14 16 18

Eb/No (dB)

10 -5
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Dense NN

Baseline

LSTM RNN

SPiNN BER 
Goal

SPiNN
Phase 2 

Goal

Time-varying HF Multipath with 
wideband HF channel model

NOTES: 1) Baseline Comparison: distributed feedback adaptive equalizer, tested against identical channel conditions
2) State-of-Art (SoA) Comparison: MIL-STD-188-110C-compliant HF radios, 4800 bps mode, 8-PSK waveform

Author’s Own
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HIGH-NOTE ARCHITECTURE IMPLEMENTED ON 
CLOUD-BASED FPGA

• Identified Light NN candidate for FPGA implementation on AWS F1 instance 
• Cloud based Xilinx XCVU9P FPGA  - midsize FPGA

• Utilized HDLCoder code generation tools
• Generates VHDL code for target hardware from a Simulink model description. Greatly 

increases IP prototype design pace by allowing us to skip the RTL development stage
• FPGA implementation uses fixed-point datatypes with well defined bit widths, leads 

to quantization error
• We balanced resource utilization while maintaining algorithm performance

11

MATLAB 
Algorithms

Simulink Floating 
Point Reference

Simulink Fixed Point 
Hardware Model

HDL Coder 
VHDL 

Generation

Xilinx Vivado High 
Level Synthesis

AWS F1 Instance 
FPGA Deployment

Parsimonious architecture!
1476 trainable parameters in channel learning 
NN - Estimated size in memory 47.2 kB 

Author’s Own

Distribution Statement A - Approved for public release. Distribution is unlimited.



Distribution Statement Pending

SUMMARY 

• High-NOTE demonstrates the ability to exploit domain insights 
along with advances in AI to overcome sensing and 
communications challenges
• Demonstrating these methods in a communications application allows a 

comparison to both current systems as well as to fundamental theoretical limits
• Improved structured interference mitigation (>35 dB) 
• Enhanced equalization and demodulation in presence of nonstationary channel
• Results achievable in single channel processing and arrays / vector-sensors

• Alleviating the need for larger arrays
• Framework is not specific to HF or communications and can be 

applied to other domains: 
• Mobile communications;  Sensing: (e.g., radar, sonar);    LPI/LPD signal 

processing
12
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NGMS HD Matched Filter
and Edge Supercompute (ESC)

DARPA HyDDENN

This research was developed with funding from the Defense Advanced Research 
Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and 
should not be interpreted as representing the official views or policies of the 
Department of Defense or the U.S. Government.
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Overview and Matched Filter Formalism
GOAL : Matched Filtering seeks to uncover an 

unknown signal buried in white Gaussian noise 
by careful design of the “optimum” filter.

This can be expressed as

where:

𝑥𝑥 𝑡𝑡 ∶ Uncorrupted Desired Signal

y 𝑡𝑡 ∶ Corrupted Received Signal

𝑛𝑛 𝑡𝑡 ∶ Additive White Gaussian Noise

ℎ 𝑡𝑡 ∶ Uncorrupted Desired Signal

𝑧𝑧 𝑡𝑡 ∶ Filtered Signal

𝑥𝑥 𝑡𝑡 𝑦𝑦 𝑡𝑡

𝑛𝑛 𝑡𝑡

ℎ 𝑡𝑡 𝑧𝑧 𝑡𝑡

It can be shown that the optimal ℎ(𝑡𝑡) in the frequency 
domain is 

ℎ 𝜔𝜔 = cx∗(𝜔𝜔)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

for some complex scaling factor c. Thus in the time 
domain, we have that the optimal filter

ℎ 𝑡𝑡 = 𝑥𝑥(𝑇𝑇 − 𝑡𝑡)

𝑥𝑥 𝑡𝑡

𝑡𝑡

𝑓𝑓(
𝑡𝑡)

ℎ 𝑡𝑡

Distribution Statement A - Approved for public release. Distribution is unlimited.
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Computation Complexity: HD Matched Filtering vs 
Traditional Matched Filtering

Metric FFT based MF Time Based MF

Number of Samples 𝑁𝑁 = 𝑇𝑇𝑇𝑇𝑠𝑠

Zero Padded Vector Length 𝑍𝑍 = 𝑁𝑁 + 𝑓𝑓𝑠𝑠(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇)

Computation Cost (FFT) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 N/A

Computation Cost (IFFT) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 N/A

Precision 64 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

Search Grid Size 𝑀𝑀𝑀𝑀

Total Memory Overhead 64𝑀𝑀𝑀𝑀𝑀𝑀 64𝑀𝑀𝑀𝑀𝑀𝑀

Total Compute Overhead (Training) 𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) 𝑁𝑁/𝐴𝐴

Total Compute Overhead (Inference) 𝑀𝑀𝑀𝑀𝑀𝑀 + 2𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 𝑀𝑀𝑀𝑀𝑀𝑀

Matched Filtering Pipeline HD Matched Filtering Pipeline

RADAR
RETURNS

HD 
PROJECTION

TRAINED HD 
REPRESENTATIONS

DETECT
DELAY / 

DOPPLER

Metric HD based MF

Number of Samples 𝑁𝑁 = 𝑇𝑇𝑇𝑇𝑠𝑠

Zero Padded Vector Length 𝑍𝑍 = 𝑁𝑁 + 𝑓𝑓𝑠𝑠(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇)

HD Projection 𝐷𝐷𝐷𝐷

HD Decoding N/A

Number of Classes 𝑀𝑀𝑀𝑀

Precision 64 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

Total Memory Overhead 64𝑀𝑀𝑀𝑀𝑀𝑀

Total Compute Overhead (Training) 𝑀𝑀𝑀𝑀𝑀𝑀(𝐸𝐸𝐸𝐸)

Total Compute Overhead (Inference) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑇𝑇: Duration of Received Pulse 𝑓𝑓𝑠𝑠: Sampling Rate 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚: Max Time Delay 𝑀𝑀: Number of Delays 𝑃𝑃: Number of Dopplers 𝐷𝐷: HD Dimensionality
𝐸𝐸: Number of HD Training Exemplars per Class 𝜀𝜀: Computational Complexity Factor (<<1) of Vector Comparison Relative to MACCDistribution Statement A - Approved for public release. Distribution is unlimited.
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HD MF Outperforms Physics-Based MF

Noise Resilience
HD reduces error by much as 
50% for Delay / Doppler 
estimation relative to physics-
based MF

Grid Jitter
HD reduces error by much as 
80% for Delay / Doppler 
estimation relative to physics-
based MF

Distribution Statement A - Approved for public release. Distribution is unlimited.
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NG Compute-In-Memory Edge Supercompute (ESC)

Solution: We take advantage of compute-in-memory
technology in the analog, charged-based domain to
overcome the memory bottleneck

# Step number in 
the sequence

y = a1*x1 + a2*x2
z = y*w

The following computation is used for illustration:

Von Neumann architecture requires constant movement 
of data to/from memory 

Key Features
 6.4M CIM Elements
 50 Gbps High Speed Interface
 x2 NoCs (Network on Chip)
 x2 SiFive CPUs
 0.4 TOps/sec (1-bit MAC)
 22.8 fJ per 1-bit MAC
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ESC Outperforms Standard Architectures
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128 Classes
256 Classes

Power Consumption

ESC performs > 1000x better than GPU and > 250x better than FPGA 
in the HD Based Matched Filtering task

Metric Measurement 
Energy / Op 22.8 fJ 
Throughput 0.42 TOps 
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