Challenges in Architecture & Synthesis for 3D ICs

Dr. Rob Aitken, Synopsys, Inc.

rob.aitken@synopsys.com

www.synopsys.com/A&G

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Dr. Rob Aitken

Rob Aitken is a Distinguished Architect and leads the Office of Technology Strategy at Synopsys, where he is looking into future technical opportunities for the company, including AI/ML, security, and next generation design methodology including multi-die systems. Dr. Aitken is an IEEE Fellow.

Vision

Synopsys helps our customers innovate from silicon to software so they can bring amazing new products to life.

Mission

Synopsys is the world's leading EDA and services company, #1 in Interface, foundation & physical IP and a global leader in application security.

Multi-Die Systems are Here

Synopsys Tracking >100 Multi-Die System Designs

• Servers / AI dominate

• NICs, Switches common use case

• Automotive, smartphones ramping

Can 3D bring back Moore?

41%

- Classic Moore scale factor is $\sqrt{2}$ or a 41% improvement
- Two die stack reduces inter-cell distance by $\sqrt{2}$
- Shorter wires allow faster communication at lower power
- But devices don't change...
- Achieving Moore style gains requires new architectures and new approaches

Multi-Die Systems are Here

3DIC COMPILER PLATFORM

MULTI-DIE SYSTEM

If you want to build a multi-die system today, there are EDA solutions that you can use

 Future EDA innovations will enable new architectures and make designers even more productive

Multi-Die Systems are Here

- If you want to build a multi-die system today, there are EDA solutions that you can use
- Future EDA innovations will enable new architectures and make designers even more productive

Multi-scale Interconnect Options

Multi-Die System Architecture

Technology Progression for Architecture, Synthesis, Place & Route...

OBJECTIVE: IMPROVE SWAP, REDUCE REQUIRED GUARDBANDS

Before	Now	Next
Stack of individual 2D dies	Stack of Co-Designed dies	Stack of Co-Optimized "Multi-tier" dies
Planned in 2.5D or 3D Implemented as individual 2D die Function-level partitioning Source-synchronous D2D communication	Planned in 3D Implemented as multiple 2D dies Coarse-grained partitioning Synchronous D2D communication	Planned and implemented in 3D Multi-tier, optimized as one Fine-grained partitioning Synchronous D2D communication

Some performance improvement

Promising gains reported

Where the 41% could be found

The Path to True 3D

Crawl

Design for stacked die

Allocate blocks between die Optimize metal, thermal etc. Example: stacked/folded 2D design

Some performance improvement

Walk

Break physical boundary

Full dies-stack optimization

Logical hierarchy independent of physical Individual design block spans multiple die; includes clocking and power delivery

Promising gains reported

Run

Native 3D system design flow

Bottleneck Analysis

Resilience

Rearchitect full system across multitier stack workload/memory/power; optimized co-design-fortest/yield/resilience/heat...

Where the 41% could be found

THANK YOU