Challenges and Solutions to DATA I/O

Keren Bergman

Professor of Electrical Engineering; Director, Columbia Nano Initiative Columbia University

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Images sources: AMD, Intel, and Nvidia.

Bringing Photonics to the Chip

2.5D Integration

2.5D Integration

~400 Gbps/mm ~10 pJ/b

Pros:

- Better density than 2D
- Balanced scalability & flexibility
- Thermal isolation

Cons:

- Parasitics from doubled
 bump interfaces and traces
- Still limited BW density
- Added complexity from interposer design

Bringing Photonics to the Chip

Monolithic Integration

Pros:

- Minimal parasitics
- Simplified packaging
- Thermal dissipation

Cons:

- Bandwidth density limited by electronics
- Outdated technology nodes limit power, scaling

nodes limit power, scaling		
2.5D Integration	Monolithic Integration	
~400 Gbps/mm	~200 Gbps/mm	
~10 pJ/b	~5 pJ/b	

Bringing Photonics to the Chip

3D Integration

2.5D Integration

~400 Gbps/mm

~10 pJ/b

Advantages:

- Best shoreline & area bandwidth density
- Massive wavelength scalability
- Benefits from advanced CMOS technology nodes

Challenges:

2.5D

Interposer

Package Substrate

Monolithic

Monolithic EIC-PIC

Package Substrate

EIC

 \mathbf{O}

Fiber Array

Fiber Array

PIC

 \mathbf{O}

 \mathbf{O}

3D Integration for Scalable Optical I/O

Source: A. Rizzo *et al.*, Nature Photonics, 2023

Distribution Statement A – Approved for public release. Distrib

THANK YOU