ERIZO ELECTRONICS RESURGENCE INITIATIVE

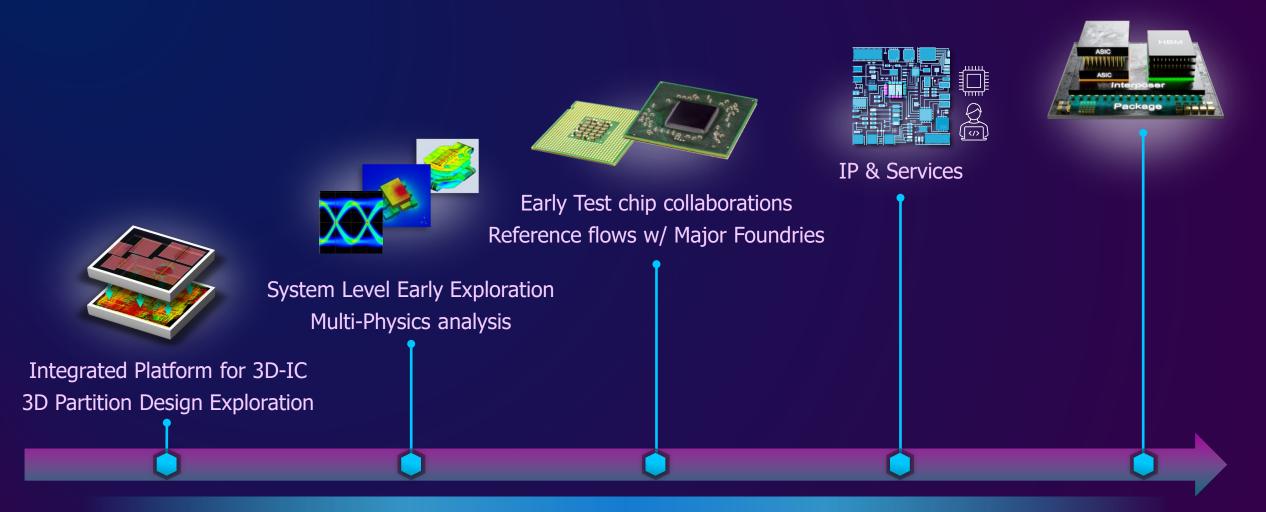
Results and Upcoming Challenges in Physical Design of 3D-ICs

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Vinay Patwardhan

Product Management Group Director, Cadence Design System

Vision


Design Automation for implementation of complex multi-die designs.

Mission

Develop algorithms and methodologies for system technology co-optimization for multi-tier 3D-ICs, to enable next wave of technology innovation.

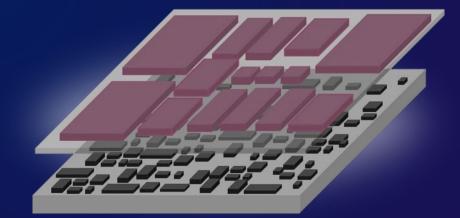
<u>c</u>adence°

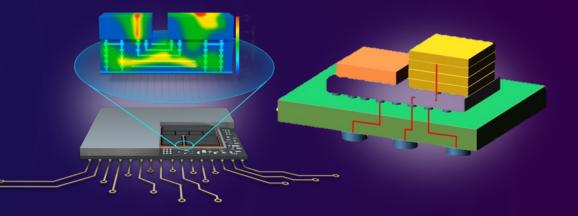
Creating 3D-ICs with Cadence Technology

Innovation in Multi-Die design with leading customers and industry partners

cadence

Heterogeneous Integration Physical Design Complexity


Chip stacking (Bumpless) Homogenous or Heterogeneous Bottom-Up flow or Top-Down Flow Interposer : Silicon or Organic Needs Offchip Design and Analysis Interface with ASIC and Package

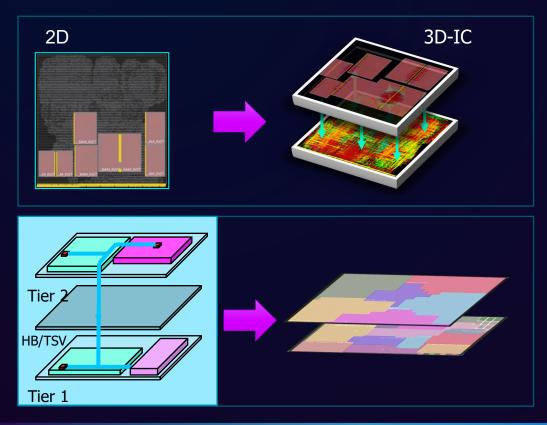

Package Implementation Package Routing Package level flows

Connection Type	Solder Ball	C4 Bump	Micro Bump	Hybrid Bond
Typical Pitch of Connection	>1000um	250um	50um	<10um
# of Connection (in 1mm ² area)	<1	16	400	>10000

EDA tools need to model and implement Physical and Electrical object Properties Die Interconnections Electro thermal & mechanical effects

3D-ICs Physical Design Challenges (EDA perspective)

3D Chip Stacking


- Design size capacity Multiple Dies optimization
- Support for chiplets across multiple nodes
- Concurrent editing of multiple devices
- On-the-fly die splitting and re-partitioning in Z direction
- Timing driven cross-chip(let) routing
- Co-design with packaging

3D Analysis and Sign-Off

- STA with automated corner reduction
- SystemLVS with rule-deck-free methodology
- Multi-die EMIR
- Early-stage and signoff level thermal analysis
- Stress and CMP planarity checks
- New 3D-IC test standards

Power Performance Area Gains Achieved by 3D Partitioning

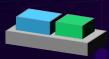
Homogeneous and heterogenous die stacks

Designs (Descriptor)	Results		
Wearable	20% area savings, 20% wirelength savings		
CPU	30% power reduction 85% area scaling		
Mobile Core	21% wirelength , 43% area improvement,		
Multi-core Processor	38% better performance , 13% power savings		
NPU	26.7% total PPA gain		

Fine Grain Auto Partitioning based on multi-objective 3D placement 3D-IC configuration shows improvement in performance and saves power

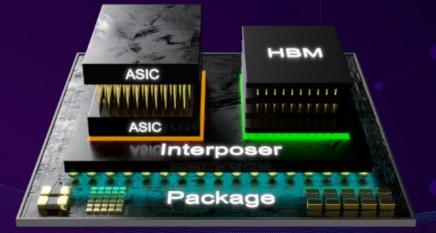
cadence[®]

Cadence Strategy to Further Accelerate 3D-IC Physical Design


Unified platform-based flow with system level analysis

- Integrity[™] 3D-IC Platform
- High-performance analysis

Fine Grain die partitioning


- Early-stage thermal/power analysis
- Seamless die-to-die signal integrity

Bottleneck reduction thru co-optimization

- High-capacity Auto-routing
- Cross die bump optimization

AI/ML

cadence

3D-IC Schedule Acceleration

Time

THANK YOU