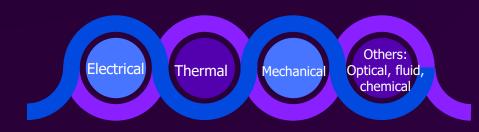
Lightning Talk: Latest Results and Upcoming Challenges in Simulation of 3D ICs

Elaine Tang

Senior Key Expert Siemens Technology, Siemens Corporation


The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Why use Physical Simulation Analysis for IC Design & What are the Challenges?

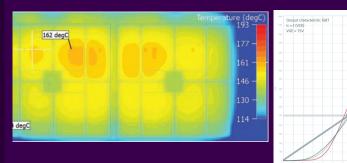
- Simulations can be used to test "what-if" scenarios and explore design concepts prior to physical fabrication and testing
- Can help to reduce cost and design turnaround time

Multi-domain physics

- Multiple physics domain that are interconnected
- Each domain of physics might utilize different numerical methods, which could make integration and coupling a challenge

Multi-scale

- Might involve large number of transistors, which requires scalable algorithms and high performance computing
- Varying functional components (Chips, interconnects, heat sink, etc.)
- Heterogenous integration (2.5D, 3D)

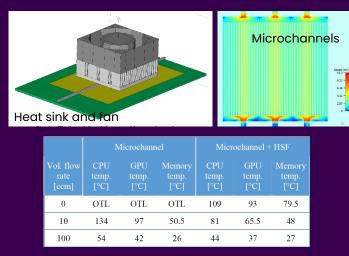

Trade-off among multi-disciplinary and multi-scale requirements make it even more challenging

Multi-Domain Physics Simulation Analysis

Electro-thermal coupling

- Joule heating from electronics
- Effect of temperature on electrical performance (e.g. resistivity)

Electro-thermal simulation of an IGBT power inverter using Siemens Simcenter Flotherm (Siemens Digital Industries Software)

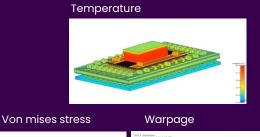

Temperature-dependent IV curve

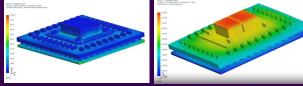
Thermal-only simulation resulted in up to 34% difference in temperature

Thermal-Flow coupling

- CFD / conjugate heat transfer to evaluate cooling strategies,
- E.g. Air cooling, liquid cooling, Phase change material

Thermal-flow modeling using Flotherm (Bognár et. al. THERMINIC, IEEE, 2022)

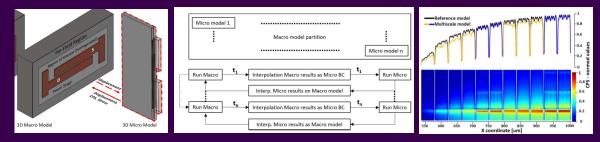



Simulate combined strategy of microchannel + heat sink and fan

Thermo-Mechanical coupling

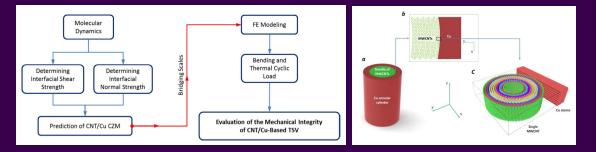
• Effect of varying thermal expansion properties among materials

Thermo-mechanical analysis of FOWLP (Siemens Digital Industries Software)


Predict thermal-induced stress and warpage, which may lead to reliability issues

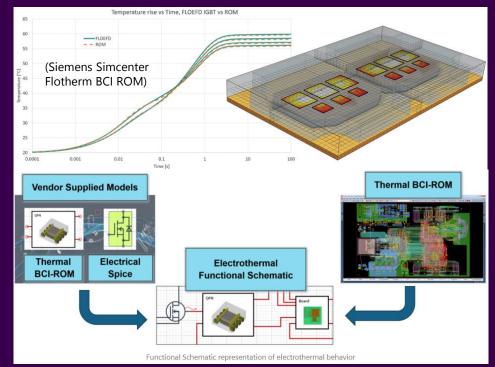
Multi-Scale Simulation

Coupling across different length-scales


- Lumped parameter model / 3D model
- Macro-scale / Micro-scale

Two-way coupling of Thermo-Mechanical Simulation of Power Integrated Circuits (Bojita et. al., 2022, IEEE J. Electron Devices Soc)

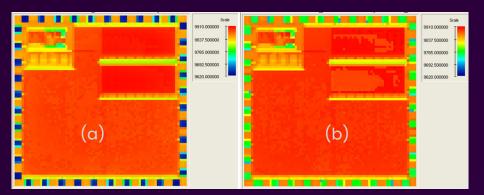
• Nano-scale


Molecular Dynamics simulation to determine CNT/Cu interface adhesion properties for thermo-mechanical simulation (I. Awad, et. al. Nanotechnology, 2015)

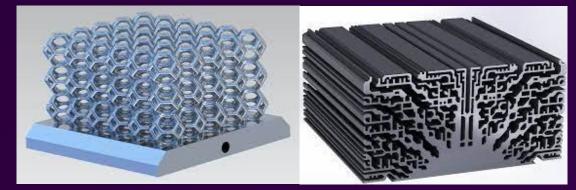
Reducing Computational Complexity

- Reduced order model (ROM) to simulate physics behavior independent of boundary conditions
- Hours of simulation can be simulated in a matter of minutes

Spatial temperature response of the BCI-ROM vs high fidelity simulation of an IGBT using ROM (Siemens Digital Industries Software)


Upcoming challenges

With increasing complexity in design, How to reach optimal performance faster?


- Seamless and intelligent integration of different physics domain / scales and automatic model generation
- Novel simulation methods to speed up analysis
- Data management and visualization for collaboration
- Embedded sensors could permit run-time optimization of work-load

How to make sure the optimal design generated can be manufactured?

- Embedding manufacturing / fabrication considerations at early stage (e.g. hotspots detection, optimizing filling strategy)
- Consideration of advanced manufacturing methods at design stage: e.g. lattice design, topology optimization

Simulated surface topography colormap for Chemicalmechanical polishing using Calibre CMPAnalyzer (a) before and (b) after fill optimization

Novel heat sink designs for 3D printing (Siemens)