

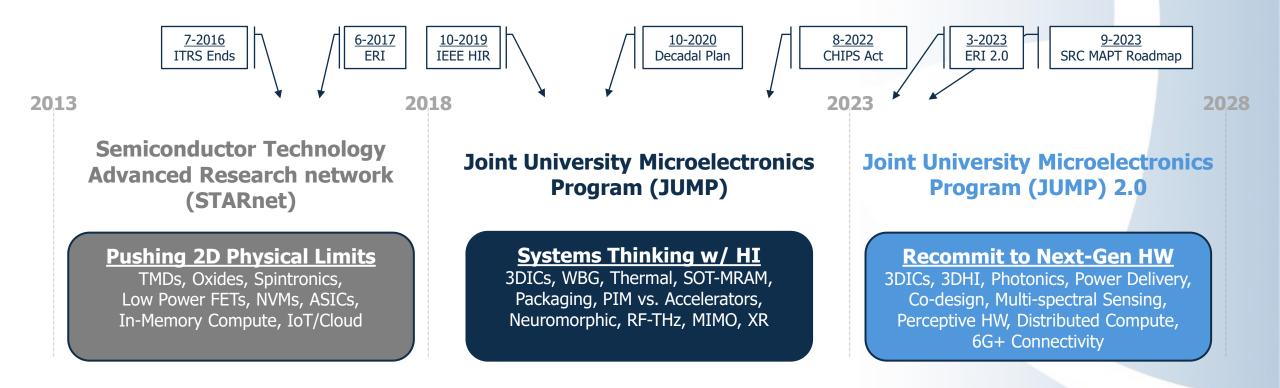
JUMP 2.0 Overview

Dr. Todd Younkin

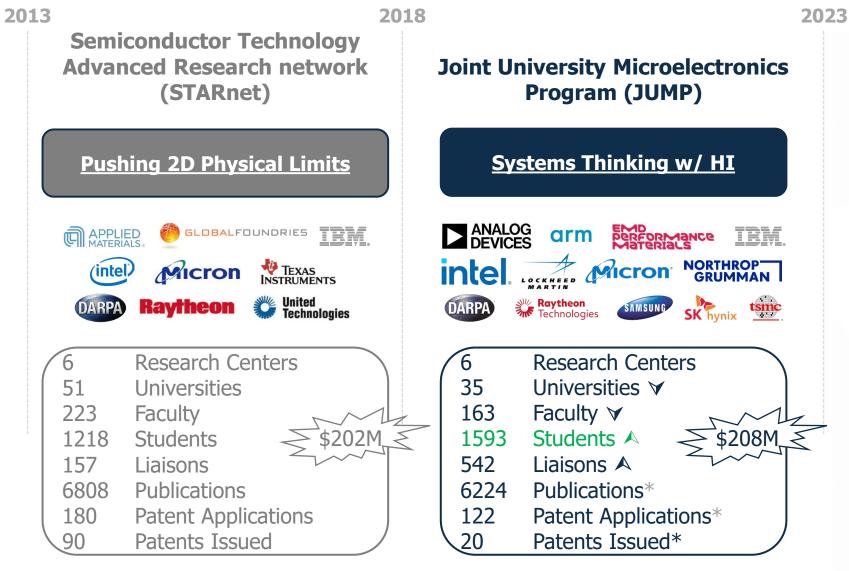
SRC, President and CEO todd.younkin@src.org

<u>Mission</u>

Driving Semiconductor Innovation

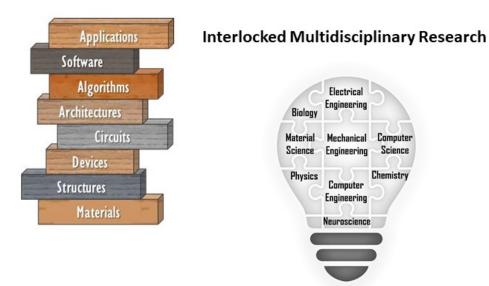

Vision

Neutral, Trusted, and Science-Driven

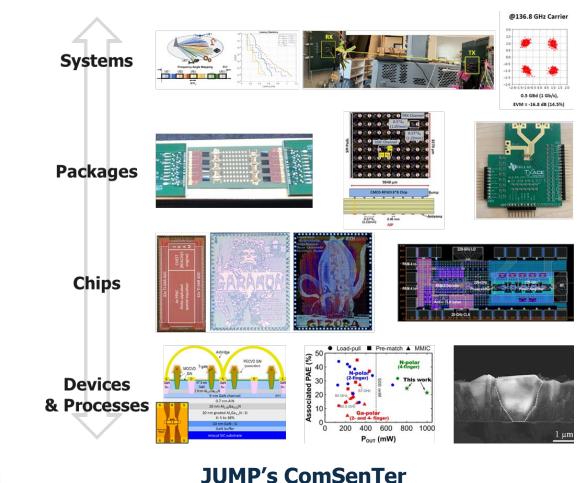

Values Prosperity, People, and the Planet

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Foundational Microelectronics Research that Benefits both Economic and National Security



2028


Systems Thinking w/ HI in an Academic Setting?

Holistic Optimal Solutions Driven by Hardware/Software Co-Optimization

2030 Decadal Plan for Semiconductors

https://www.src.org/about/decadal-plan/



Wireless systems providing extremely high aggregate data transmission capacities

Examples of Additional JUMP Highlights

ASCENT: Worlds 1st Embedded Die with D-Band Integrated Antenna in a Glass Interposer Transferred DoD's SHIP program

www.src.org/newsroom/newsletter/srcconnectionsfeb2023.pdf

CONIX: XR Telepresence Platform Technology Enabled an Immersive Multi-user Video Conference

http://eepurl.com/isSLvI

CRISP: JUMP and Intel Labs Success Story: UCSD Professor Leads HD Computing Research Efforts

https://community.intel.com/t5/Blogs/Tech-Innovation/Artificial-Intelligence-AI/JUMP-and-Intel-Labs-Success-Story-UCSD-Professor-Leads-HD/post/1503321

Long-range Innovation That Drives New DARPA Programs

The JUMP Community Thanks You, DARPA!

Dev Palmer

Tim Hancock

Tom Rondeau

John Davies

Ali Keshavarzi

Serge Leef

Jason Woo

Y.K. Chen

Jay Lewis

Hava Siegelmann

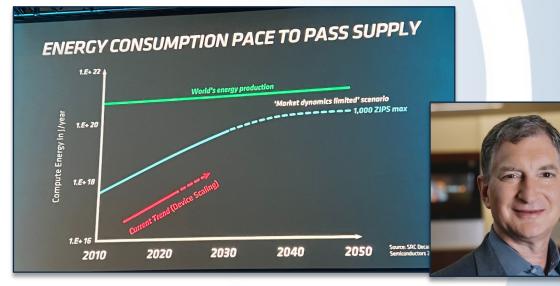
Andreas Olofsson

Linton Salmon

SRC's <u>NEW</u> Challenge Coins

Leaders

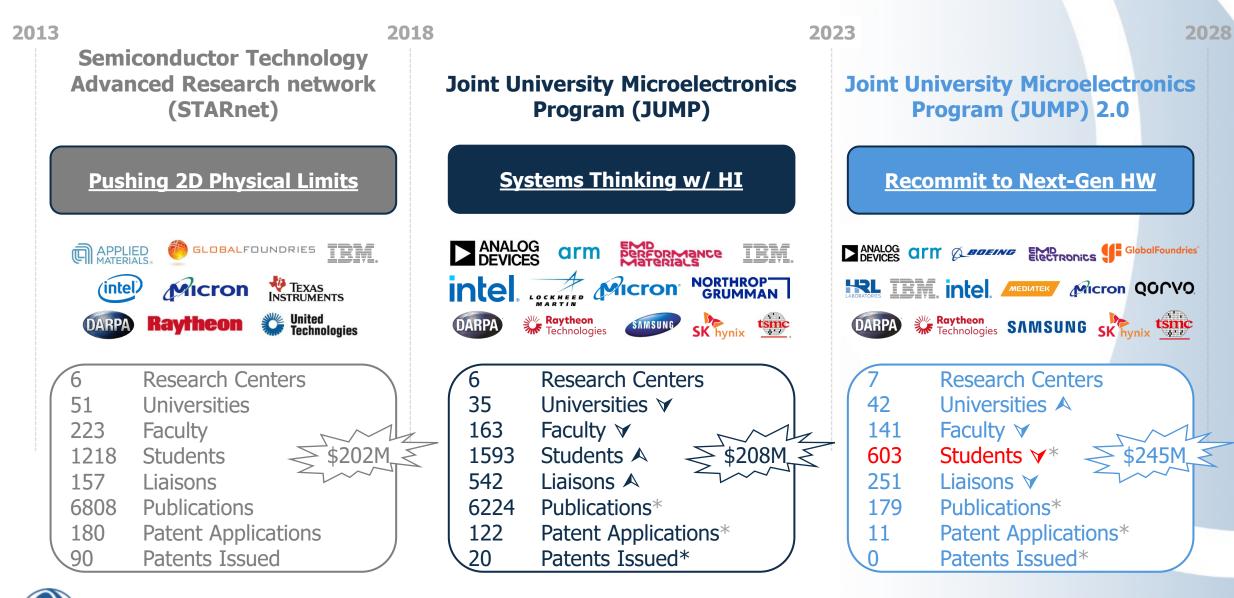
Learners



SRC's 2030 Decadal Plan for Semiconductors

https://www.src.org/about/decadal-plan/

https://www.nextplatform.com/2022/01/04/the-five-horsemen-of-the-data-apocalypse/



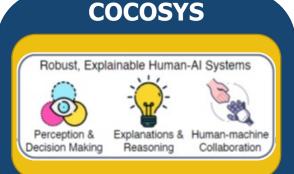
Mark Papermaster, AMD CTO

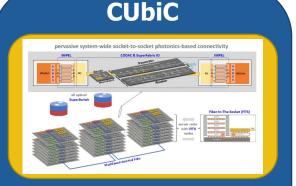
Semi Engineering - What Future Processors Will Look Like

"SRC has done a great job with their Decadal Plan to highlight this issueof course it's not just the energy used, it's the impact on Planet Earth."

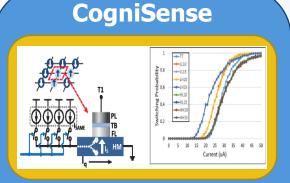
JUMP 2.0 – Selected Centers & Directors

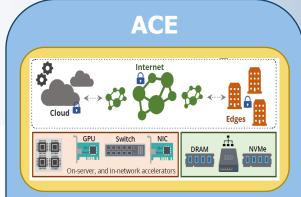
#	Theme	Center's Full Name	Acronym	Prime University
1	Cognition	Center for the Co-Design of Cognitive Systems	COCOSYS	Georgia Tech
2	Communications and Connectivity	Center for Ubiquitous Connectivity	CUbiC	Columbia
3	Intelligent Sensing to Action	Center on Cognitive Multispectral Sensors	CogniSense	Georgia Tech
4	Systems and Architectures for Distributed Compute	Evolvable Computing for Next Generation Distributed Computer Systems	ACE	UIUC
5	Intelligent Memory and Storage	Center for PRocessing with Intelligent Storage and Memory	PRISM	UCSD
6	Advanced Monolithic and Heterogeneous Integration	Center for Heterogeneous Integration of Micro Electronic Systems	CHIMES	Penn State
7	High-Performance Energy- Efficient Devices for Digital and Analog Applications	SUPeRior Energy-efficient Materials and dEvices	SUPREME	Cornell




Technology Centers

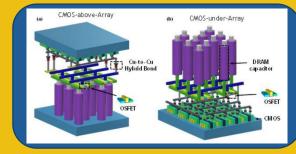
JUMP 2.0 Center Goals – System Centers


Grand Challenges


- Secure, robust, and seamless human-AI collaboration
- Synthesize neural, symbolic, and probabilistic approaches for efficient, robust, and explainable algorithms
- Co-design heterogeneous systems that bridge current accelerators to future cognitive architectures
- Leverage CMOS and emerging tech for cognitive hardware

- Close computationcommunication gap with vast reduction in global system energy consumption
- Grand Challenge: Robust, scalable edge-to-cloud wireless with >10 Tbps with sub-pJ/bit efficiencies
- While enhancing bandwidth densities by >100X over capacity-constrained channels

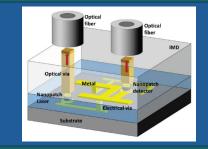
- Power and data-efficient wideband sensing arrays
- Eliminate obstructions of machine perception and address analog 'data deluge'
- Create adaptive front-end
- Reduce digital data generated by dynamically adapting the power and perception quality in a multispectral sensor
- Design CogniSense sensor with a compact form factor


- Devise scalable computing technologies for improved performance and energy efficiency of diverse applications by 100x over 2030 compute systems
- Evolvable computing framework with accelerators, memory, and communication stack plus security mechanics
- Designed for extensibility and composability


JUMP 2.0 Center Goals – Technology Centers

Benchmarking

PRISM



- Intelligent Memory & Storage (IMS)
- Showcasing (1) Personalized & Secure Drug Discovery, (2) Deep Insights
- Software layer adapts to existing framework for compatibility and distributes work throughout system for max performance and efficiency; security, reliability, & availability
- Will develop a novel compute engine in 3D V-NAND to accelerate ultra-largescale AI models and data-intensive workloads

- HI nearing monolithic integration
- Reconfigurable photonic connectivity with 100x enhancement vs SOTA
- Generalized framework for materials synthesis and implementation
- Power delivery solutions at 50 kW and >80% efficiency
- Thermal management for dense electronic, photonic, and sub-THz that achieves >1kW/cm2 heat flux
- Fully-integrated design automation
- Portability and scalability of components across diverse platforms

SUPREME

- Develop new materials, technologies and devices for 10–100x system-level performance improvement
- Accelerate the pace of discovery and lab-to-fab transition in microelectronics using physics-guided down-selection of computational materials discovery then prototyped into devices at SOTA 8" fabs at MIT and Cornell
- Seeks close collaboration with the systems-level JUMP 2.0 centers to develop prototype devices based on the new materials and technologies from SUPREME

DARPA PM Mentors Will Engage JUMP 2.0 Centers

Attend yearly center reviews and caucus discussions Interact with center researchers and industry liaisons Identify breakthrough ideas to seed new DARPA programs

COCOSYS

John Davies EW/Adv. Processing

James Wilson Integration

Thomas Ehrenreich Directed Energy

Lok Yan Hardware Emulation

PM	DARPA Web Bio	
John Davies	https://www.darpa.mil/staff/mr-john-davies	
James Wilson	https://www.darpa.mil/staff/dr-james-wilson	
Thomas Ehrenreich	https://www.darpa.mil/staff/dr-thomas-ehrenreich	
Lok Yan	https://www.darpa.mil/staff/dr-lok-yan	

CHIMES

Matt Wilding Software Engineering

PRISM

Todd Bauer MEMS/Rad-Hard SUPREME

JUMP 2.0 PM

CMOS/Processing

Dev Palmer MTO Deputy Director

DARPA Web Bio	
https://www.darpa.mil/staff/dr-matthew-wilding	
https://www.darpa.mil/staff/dr-todd-bauer	
https://www.darpa.mil/staff/dr-jason-woo	
https://www.darpa.mil/staff/dr-dev-palmer	

SRC's Broadening Participation Pledge

https://www.src.org/about/broadening-participation/

2030 Broadening Participation Pledge "Throughout the decade, as SRC defines, selects, and manages its research and education programs, we will look to grow our student base, establish a balanced mix of bachelors, masters, and Ph.D.-level initiatives, and create a more diverse and inclusive community."

Each JUMP 2.0 Center has:

- Proposed Center commitments
- A public Center pledge
- Committed Center BP champion(s)
- The support of SRC, DARPA, and Industry

Increase the Participation of US Citizens in Adv. Degrees

Workforce Development: NSF REU* Collaboration

*Research Experiences for Undergraduates

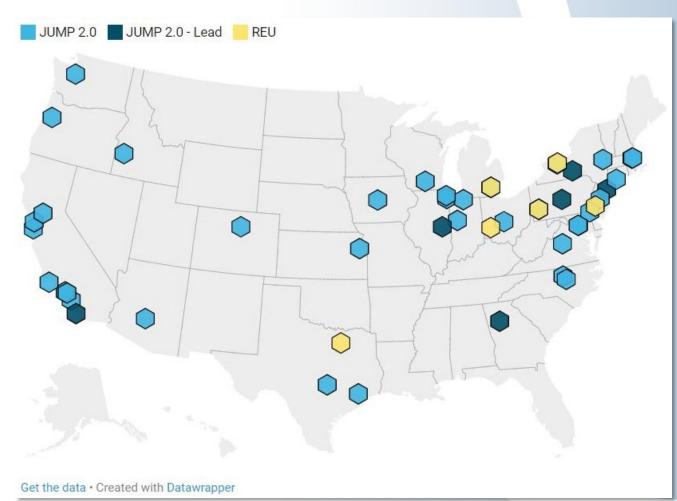
Must be US citizens or permanent residents

Enrolled in four-year colleges or community colleges

Women and underrepresented minorities are strongly encouraged

Veterans of the U.S. Armed Services are strongly encouraged

https://www.nsf.gov/news/news_summ.jsp?cntn_id=307335


A 5-year, \$9.9M MOU between SRC and NSF will provide 24 cohorts mapped to the 7 JUMP 2.0 technology themes. Expected to fund >600 students.

Six cohorts selected in the first round (2023): UT/Dallas, CMU, U/Rochester, Penn, U/Dayton, U/Michigan

Summary

- SRC is committed to the advancement of semiconductor technologies and technologists
- We serve the U.S. and like-minded nations
- Thanks to DARPA, JUMP 2.0 is a national innovation network driving fundamental microelectronics research. It looks beyond the CHIPS + Science Act
- Our strong partnership with DARPA delivers results
- NSF, SRC, and its member companies have partnered to support the REU program, moving undergraduates into advanced degrees in semiconductor manufacturing
- With more U.S. citizens, our REU will be beneficial to our DIB partners or critical technologies.

An Unprecedented Time for Semiconductor R&D and WFD!

Roman Caudillo

JUMP 2.0 Director Roman.Caudillo@src.org

Adam Knapp JUMP 2.0 Program Manager Adam.Knapp@src.org

Tameka Bell JUMP 2.0 Program Coordinator Tameka.Bell@src.org

Thank You!