Challenges and Opportunities for VLSI Electronics Operating in Cryogenic Environments

Daniel Friedman- IBM

Yorktown Heights, NY, USA

6)

dfriedmn@us.ibm.com

914-945-1577

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Daniel Friedman, Ph.D.

Senior Manager/Distinguished Research Scientist Communication Circuits and Systems & IBM Quantum IBM T. J. Watson Research Center Fellow, IEEE

We are on a small planet ...

... with big problems to solve

Improved nitrogen-fixation process for creating ammoniabased fertilizer New catalysts to make CO₂ conversion into hydrocarbons more efficient and selective

Better financial models to improve stability, predictability and growth of world economies New classes of antibiotics to counter the emergence of multidrug-resistant bacterial strains

Why quantum?

Problems we can't adequately address today

Problems we can address today classically Problems we hope to address with quantum and classical computing

Despite how sophisticated digital "classical" computing has become, there are many scientific and business problems for which we've barely scratched the surface

IBM Quantum © 2023 IBM Corporation

Computing with caffeine

- If our best classical computers are so powerful, shouldn't we be able to perfectly simulate molecules and chemical reactions?
- This would allow us to accelerate discovery of new compounds and processes for healthcare, materials, alloys, and sustainable energy creation
- Let's consider caffeine ...

Computing with caffeine

 We would need approximately 10⁴⁸ bits to represent the energy configuration of a single caffeine molecule at a single instant in a classical computer

This is 1 to 10% of the total number of atoms in the Earth

Computing with caffeine

IBM Quantum

 Although it's impossible to completely represent the molecular configuration of caffeine on today's most powerful supercomputers, we could represent it using 160 logical qubits

Exponential progress - Executed by IBM Son target 3

	2019 🕑	2020 🥝	2021 🥑	2022 🧭	2023	2024	2025	2026+	
	Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applica- tions with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integration of error correction into Qiskit Runtime	
Enterprise Developers and					Prototype quantum software functions $\mathfrak{Y} \longrightarrow$		Quantum software functions		
System Integrators							Machine learning Natural	science Optimization	
Quantum Computational Scientists		Quantum algorithm and a	pplication modules	\bigotimes	Middleware for Quantum				
		Machine learning Natur	al science Optimization		Quantum Serverless 🐌	Intelligent orchestration	Circuit Knitting Toolbox	Circuit libraries	
Quantum Physicists	Circuits	$\overline{\mathbf{O}}$	Qiskit Runtime 🔗	na n					
				Dynamic circuits 🥝	Threaded primitives 👌	Error suppression and miti	gation	Error correction	
System Modularity	Falcon 🔗 27 qubits	Hummingbird <	Eagle 🔗 127 qubits	Osprey 🔗 433 qubits	Condor 👌 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K-100K qubits with classical	
								communication	
					Heron 👌 133 qubits x p	Crossbill 408 qubits			

Exponential progress-Executed by IBM 🥪 On target 🏼 🕹

IBM Quantum

	2019 🤡	2020		2021 🥥		2022 🥑		2023	2024	2025	2026+	
	Run quantum circuits on the IBM cloud	Demonstra prototype c algorithms application	te and Juantum and hs	Run quantum programs 100 with Qiskit Ru	lx faster Intime	Bring dynamic circ Qiskit Runtime to more computatio	cuits to unlock ons	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applica- tions with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integration of error correction into Qiskit Runtime	
terprise								Prototype quantum softwa	Prototype quantum software functions $\mathfrak{Y} \longrightarrow$		Quantum software functions	
velopers and stem Integrators										Machine learning Natura	l science Optimization	
antum 		Quantum;	Quantum algorithm and application modules Image: Constraint of the second s					Middleware for Quantum				
entists		Machine le						Quantum Serverless 🥹	Intelligent orchestration	Circuit Knitting Toolbox	Circuit libraries	
antum	Circuits		\bigcirc	Qiskit Runtim	ie 📀							
/SICISIS						Dynamic circuits	amic circuits 🧭 Threaded primi		Error suppression and miti	gation	Error correction	
stem odularity	Falcon 27 qubits	Humming 65 qubits	şbird 🥑	Eagle 127 qubits	0	Osprey 433 qubits	0	Condor 👌 1,121 qubits	Flamingo 1,386+ qubits	Kookaburra 4,158+ qubits	Scaling to 10K-100K qubits with classical	
											communication	
								Heron 👌	Crossbill			
-Bu	it fully desical qub	eliveri aits: 6	ng o Pnah	n quar ling sc	itum a <i>linc</i>	i compi	utin titic	g's promis	se demand	ls large nu	imbers of	
			A laby				<u>I CICC</u>					

IBM Quantum © 2023 IBM Corporation

Ç

Basic Elements of a Quantum System

Quantum device User access Control electronics & (Qiskit & Cloud classical compute (qubits) Services)

- Runtime programs & control software
- Control hardware
- Quantum device (Qubits)

Control and readout of qubit state

Control:

- Microwave pulses drive qubit state around the Bloch sphere
- Arbitrary waveform generators used to create signals

Readout:

- Qubit state acts to shift associated readout resonator frequency
- State detected by measuring the phase shift of applied centered resonant tone

Low phase noise, well-controlled amplitude, and excellent stability required

IBM Quantum

1>

Control electronics evolution for quantum computing system scaling

20 qubits/rack \rightarrow 72 qubits/rack \rightarrow 1000 qubits/rack \rightarrow ...

Enormous progress—but support for 100s of thousands of qubits demands a paradigm shift

<u>Highly integrated CMOS in the fridge offers a</u> promising path to scaling

The challenge: move the equivalent function of racks of electronics into a dilution fridge—meeting its limited cooling & I/O capacity

Context—and challenges

Challenges to fridge electronics introduction

I/O density: limited room for cables & connectors

IBM Quantum

- Operating within limited cooling power of the cryostat's ~4K stage—<u>while achieving relevant</u> <u>scale</u>
- Producing high-fidelity qubit control signals at levels ~ -100dBm
- Sensing and processing qubit readout signals at levels ~ -120dBm

Net: Create ultra-low noise, ultra-stable signals coordinated with broader system (including calibration support) using electronics that dissipate virtually no power! Quantum © 2023 IBM Corporation

IBM Quantum

Example cryo-CMOS state controller and its operation

Realized in dual-channel test chip (14nm CMOS), flip-chip package

- Phase sets rotation *axis*
- Integral of amplitude x envelope determines *extent of the rotation*
- <u>Implementation</u>: complex mixedsignal design [custom processor with compiled SRAM, RF DAC]

Measured results show performance similar to that achieved using room temperature control—but. . . .

IBM Quantum © 2023 IBM Corporation

Frank et al, ISSCC 2022 Chakraborty et al, JSSC 2022

What could go wrong?

RF control error sources

Phase noise

Amplitude noise

Potential problems: high frequency noise, low frequency noise (drift), accuracy (# of bits), cross talk

Note: flux control suffers from similar sensitivity to non-idealities, including amplitude noise, control signal tails, and flux noise

Mixer sidebands

Sidebands can overlap transitions; noise away from intended microwave tone can have other impacts

IBM Quantum

What else might go wrong?

- Cryogenic device-level behavior of devices is not well predicted by models
 → analog performance surprises
- Cryogenic behavior of library elements not well predicted by abstractions
 → digital/memory performance surprises
- Cooling power (~1-4 W at 4K plate for current cryostats) does not stretch far without extreme per-channel efficiency (20 mW/qubit will not get us there!)
- Integration in system may surface packaging, reliability, serviceability, and other challenges

Frank et al, ISSCC 2022

Future investments to drive success: IBM Quantum scalable quantum computing through cryo-CMOS

Technology advancement:

- Enable advanced node reduced supply operation
- Device/interconnect modeling accurate below 20 K
- Improved thermal solutions/modeling at low temperatures

System and packaging advancement:

- Stress effects at 20 K and below
- Low temperature reliability modeling for CMOS & components
- New connectivity solutions—to room temperature electronics and to the qubit plane

Design advancement:

- High performance/low power RF control, flux control, communication, and processing solutions
- Scalability breakthroughs

Electronics for quantum computing is presently a low-volume application—investment is <u>necessary</u> to accelerate progress

