How to Efficiently Learn On-Device?

PRIYA PANDA

Yale University, USA

https://intelligentcomputinglab.yale.edu/

priya.panda@yale.edu

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Distribution Statement A – Approved for public release. Distribution unlimited.



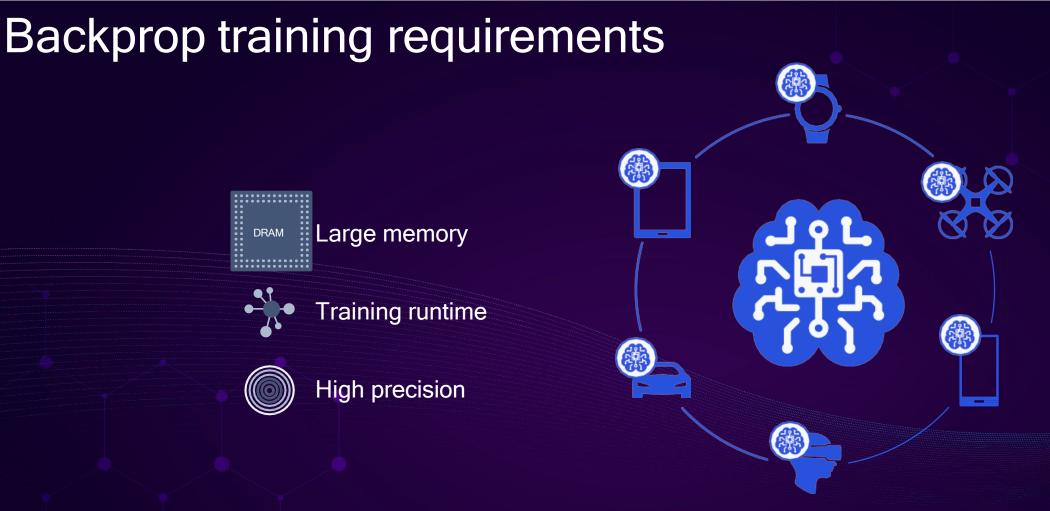
Important considerations for on-device learning

Benefits

- Better examples than training dataset for personalization
- Ability to run with smaller models that adapt to the target data
- Preservation of privacy during model development

Challenges

- Learning with Backprop is computationally demanding
- Limited compute, storage, and/or power
- Local data can be limited, e.g., noisy labels and class imbalance
- Adversarial attacks to training
- Overfitting or catastrophic forgetting



 These requirements cannot be met by battery and memory limited edge devices

Our research aims at addressing the key challenges of ondevice learning

Modelaware learning

How to use learnt model's information to learn new data

Data-aware Learning with Spikes How to use

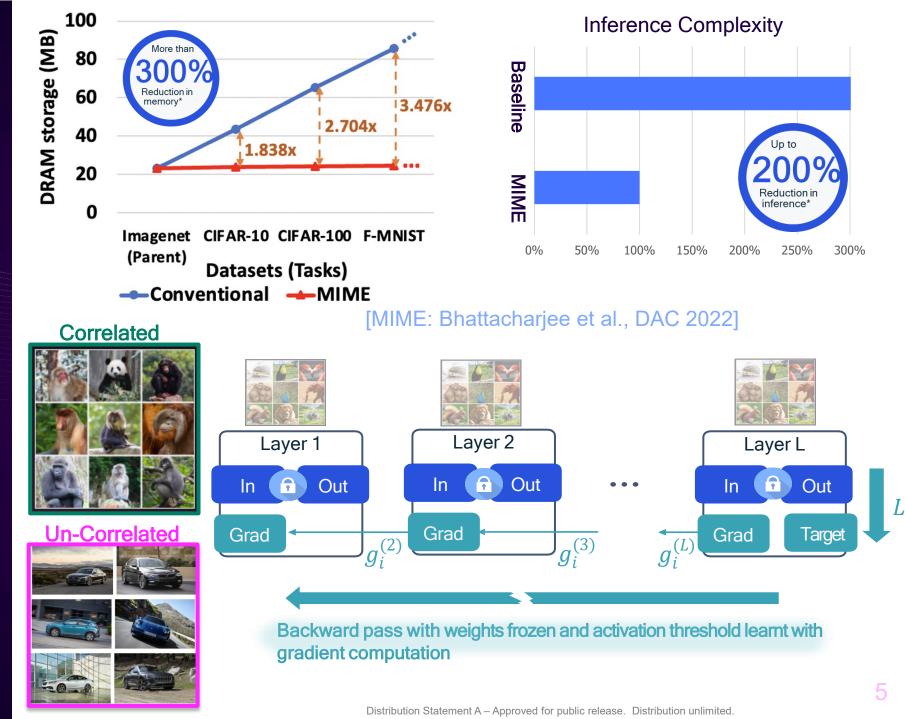
How to use Spiking Neural Networks to learn based on input data difficulty

Hardwareaware learning

How to implement on-device learning to improve efficiency of hardware resources

Reduce backprop complexity with model aware learning

- Correlation between pre-trained model and on-device data determines computation
- Dynamic gradient computation adjustment
- DARPA ShELL Accomplishments:
- >300% reduction in memory during training
- ~200% reduction in inference complexity
- Competitive accuracy with baseline



Reduce backprop complexity with data aware learning

Easy vs. Difficult data determine the ۲ temporal compute effort required during training of neuromorphic spiking neural networks

Ongoing JUMP2.0 (CoCoSys-T4):

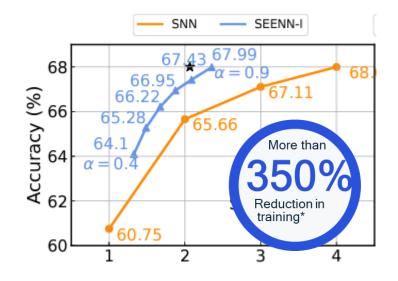
- >350% reduction in training latency per image
- >70% of inputs can be classified • early (Easy inputs are in larger concentration in real-world datasets)
 - Iso (or higher) accuracy than baseline

•

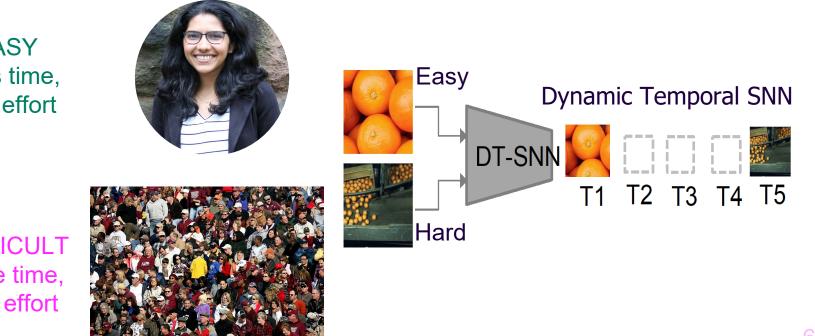
[Yale Univ.]

EASY Less time, and effort

DIFFICULT More time, and effort



[Li et al., DAC 2023; Li et al., arXiv:2304.01230v1]

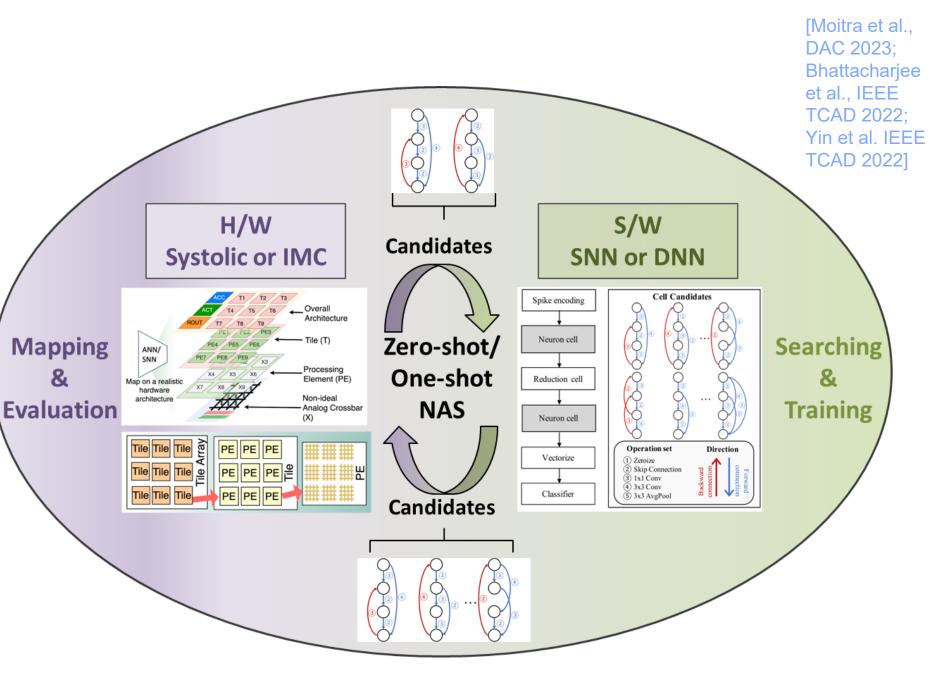


Reduce backprop complexity with hardware aware learning

 Hardware and Algorithm Coexploration with Neural Architecture Search (NAS)

DARPA YFA 2023: Prelim evaluations on IMC

- >150% higher GOPS/s
- ~400% lower power than state-of-the-art IMC accelerators

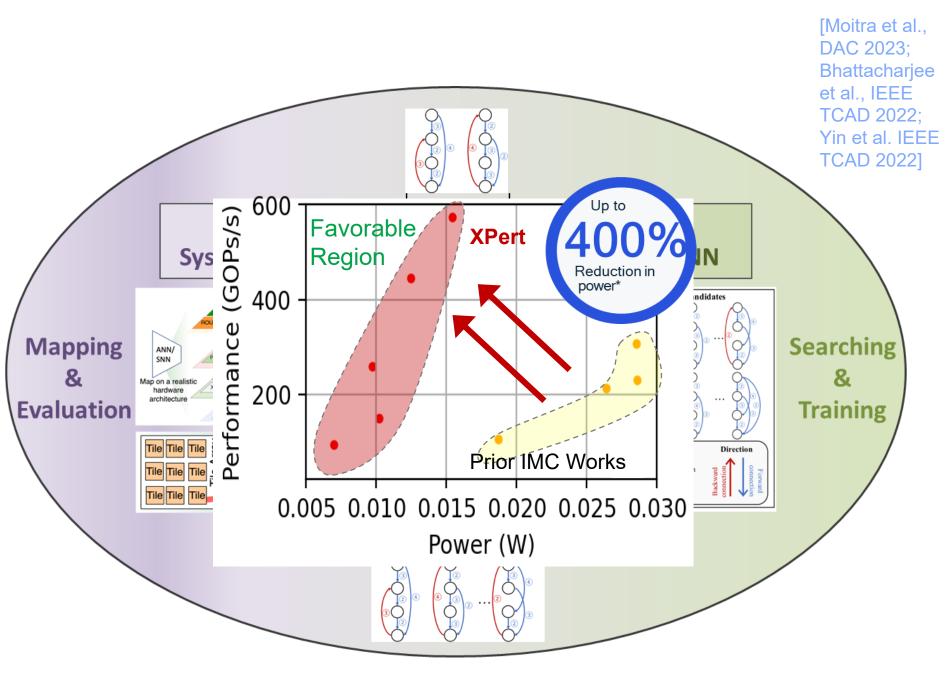


Reduce backprop complexity with hardware aware learning

 Hardware and Algorithm Coexploration with Neural Architecture Search (NAS)

DARPA YFA 2023: Prelim evaluations on IMC

- >150% higher GOPS/s
- ~400% lower power than state-of-the-art IMC accelerators



Summary

Algorithm-Hardware Co-Design combining model awareness, data awareness and hardware awareness will substantially impact on-device learning.

