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Data and
labels

Training

Offline training
A model is trained 
in the cloud with 
data reflecting the 
target application

On-device learning 
Modifying model 
after deployment 

based on the
test environment

Deploy

What is 
on-device 
learning?

Test
data

Adapt 
model

Inference
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Adapt 
model

Test 
data

On-device 
learning

Benefits
• Better examples 

than training
dataset for 
personalization

• Ability to run with
smaller models that
adapt to the target data

• Preservation of privacy 
during model
development

Challenges
• Learning with Backprop is 

computationally 
demanding

• Limited compute, storage, 
and/or power

• Local data can be limited, 
e.g., noisy labels and class 
imbalance

• Adversarial attacks to 
training

• Overfitting or catastrophic 
forgetting

Important considerations for on-device learning
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• These requirements cannot be met by battery and memory 
limited edge devices

Backprop training requirements

Large memoryDRAM

Training runtime

High precision
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Our research aims at
addressing the key 
challenges of on-
device learning

Model-
aware
learning
How to use 
learnt model’s 
information to 
learn new data

Data-aware 
Learning with 
Spikes
How to use
Spiking Neural 
Networks to learn 
based on input 
data difficulty

Hardware-
aware learning
How to implement 
on-device learning to 
improve efficiency of 
hardware resources
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• Correlation between pre-trained 
model and on-device data 
determines computation

• Dynamic gradient computation 
adjustment

DARPA ShELL Accomplishments: 

• >300% reduction in memory during 
training

• ~200% reduction in inference 
complexity

• Competitive accuracy with baseline 

Reduce backprop 
complexity with
model aware 
learning

Backward pass with weights frozen and activation threshold learnt with 
gradient computation
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• Easy vs. Difficult data determine the 
temporal compute effort required 
during training of neuromorphic 
spiking neural networks

Ongoing JUMP2.0 (CoCoSys-T4): 

• >350% reduction in training latency 
per image 

• >70% of inputs can be classified 
early (Easy inputs are in larger 
concentration in real-world datasets)

• Iso (or higher) accuracy than 
baseline 

Reduce backprop 
complexity with 
data aware 
learning

[Li et al., DAC 2023; Li et al., arXiv:2304.01230v1]

EASY
Less time, 
and effort

DIFFICULT
More time, 
and effort

Easy

Hard

Dynamic Temporal SNN
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• Hardware and Algorithm Co-
exploration with Neural 
Architecture Search (NAS)

DARPA YFA 2023:
Prelim evaluations on IMC

• >150% higher GOPS/s

• ~400% lower power than 
state-of-the-art IMC 
accelerators

Reduce 
backprop 
complexity with 
hardware 
aware learning

[Moitra et al., 
DAC 2023; 
Bhattacharjee 
et al., IEEE 
TCAD 2022; 
Yin et al. IEEE 
TCAD 2022]
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Favorable 
Region

Prior IMC Works

XPert
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Summary

Algorithm-Hardware Co-Design 
combining model awareness, 
data awareness and hardware 

awareness will substantially 
impact on-device learning.

Model-aware
learning

Data-aware 
learning with 
Spikes

Hardware-
aware learning
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