FASoC: Fully-Autonomous SoC Synthesis using Customizable Cell-Based Synthesizable Analog Circuits

Integration Exercise, July 2019

PI: David Wentzloff, UM Co-PIs: David Blaauw, Ron Dreslinski, Dennis Sylvester (UM), Benton Calhoun (UVA), Matteo Coltella (Arm)

FASoC: Fully-Autonomous SoC Synthesis

Correct-by-construction SoC design leveraging IP-XACT and Arm Socrates. Analog generation tools for xDC, PLL, SRAM, DCDC, temp sense

Datasheet Scrubber Demo

- Motivation:
 - Growing available IP and enabling reusability
 - Tracking available IP options, their revisions, and functionality is difficult for SoC designers
 - Manual approach is time consuming especially if the database grows towards millions of parts
- Store extracted information in IP-XACT++ format using VendorExtensions
- Outputs:
 - Categorization (e.g. ADC, LDO, etc.)
 - Data extraction from...
 - Text
 - Tables

VLNV				
Vendor	IDEA_UofM_UV			
Name	ADC_IDEA_0			
- Vendo	rExtensions			
	✓	^ •		
	🗢 🖮 IDEA:max			
	IDEA:unit:LSB			
	spirit:maximum:1.5	×		
	IDEA:value			
	IDEA:value			
	in spirit:name:DNL			
	✓ IDEA:values			
	✓			
	🗢 🖮 IDEA:max			
	IDEA:unit:LSB			
	spirit:maximum:1.25			
	IDEA:value	×		

Datasheet Scrubbing - Approaches

- January integration:
 - Simple ML based techniques
 - Analyzing 500 datasheets and academic papers, 7 categories
 - Average accuracy of 84% for category recognition and 86% for data extraction
- July integration:
 - More robust CNN based techniques
 - Analyzing 3000 datasheets and academic papers, 13 categories
 - Average accuracy of 96% for category recognition and 96% for data extraction
- Phase 2 goal:
 - 700,000 datasheets in 100+ categories from Digikey IC Parts
- Beyond:
 - All 6M Digikey Parts

Ohttps://github.com/idea-fasoc/datasheet-scrubber

FASoC: Fully-Autonomous SoC Synthesis

Correct-by-construction SoC design leveraging IP-XACT and Arm Socrates. Analog generation tools for xDC, PLL, SRAM, DCDC, temp sense

PLL_Gen Demo

spec_out.json Fnom_min < nominal frequency < Fnom_max 840MHz < 852MHz <860MHz

Auto-Generated SoC – TSMC 65LP – Aug 6 T/O

Distribution Statement "A" Approved for Public Release. Distribution Unlimited

Landing Page https://fasoc.engin.umich.edu/

Backup

Cell-Based Analog Design Flow

- Same flow for ADPLL, ADC, CDC, DC/DC, LDO, Temp Sensor, Memory
- Structural and behavioral description of components
- Use "digital" synthesis and APR flow for physical design
 - No custom analog layout. No analog layout tool required.

ADPLL Generator

Distribution Statement "A" Approved for Public Release. Distribution Unlimited

(Mehdi) SoC Diagram – Tape out

Multiple versions of each generator are included in our SoC to address different optimizations/strategies such as: operation ranges, accuracy, power, speed, etc..

✓ Testing circuitry wrappers are included for each of the generators

Generator Flow : Generic flow

We can use this diagram to highlight each of the steps that the generator goes through while the demo is running in the background. I can make changes if needed

Post PEX: Summary Results – Temperature Sensor

Spec Inputs $T_{Range} = [-20\ 100] \circ C$ Optimization: <u>Min. Power</u> Output Perf. (CDL sim) Max. Error: 0.16 °C E/conversion: 5.6 E-3 pJ @25 °C Output Perf. (PEX sim) Max. Error: 0.39 °C [-20\ 100] 0.083 °C [0\ 100] E/conversion: 21 pJ Area: 2300 μm^2

tel.		
NRO-	· · · · · · · · · · · · · · · · · · ·	
B	man and the second s	
	a de contra de la de la desta de la de	
B		
10171 - 1		
B		
beuta 🔤 🔤		
E		
Model NI		
141		

Spec Inputs $T_{Range} = [-20\ 100] \,^{\circ}C$ Optimization: <u>Min. Error</u> Output Perf. (CDL sim) Max. Error: 0.032 \,^{\circ}C E/conversion: 6.18 E-3 pJ @25 \,^{\circ}C Output Perf. (PEX sim) Max. Error: 0.21 \,^{\circ}C [-20\ 100] 0.08 \,^{\circ}C [0\ 100] E/conversion: 53.7 pJ @25 \,^{\circ}C Area: 2621 μm^2

Distribution Statement "A" Approved for Public Release. Distribution Unlimited