
AVLSI

IDEAL: An Intelligent Design Environment
for

Asynchronous Logic

PI: Rajit Manohar (Yale)

Co-PIs: Keshav Pingali (UT Austin), Martin Burtscher (Texas State)

Overview and goals

• A parallel design flow for asynchronous logic

❖ Modularity

‣ permitting re-use (similar to software)

‣ “re-compile” only for technology-specific optimization

❖ Minimizes expectations from the implementation technology

• Built more like a software compiler than current EDA tools

❖ Operate on a core database

❖ “Passes” for optimization

❖ Share analysis phases at multiple levels of abstraction

‣ High-level design

‣ Circuit

‣ Physical

Team and roles

Rajit Manohar
(Yale)

Keshav Pingali
(UT Austin)

Martin Burtscher
(Texas State)

Aarti Kothari
(routing)

Asynchronous
design & tools

Parallel data-structures
& algorithms

GPU-based
parallelization

Wenmian Hua
(timing analysis)

Michael He
(routing)

Yi-Shan Lu
(timing analysis)

Sepideh Maleki
(placement)

Yihang Yang
(placement)

Dr. Samira Ataei
(memory)

Fa
cu

lty

First integration meeting summary

• Parallel tools

❖ Synchronous static timing analysis (STA) + asynchronous STA

‣ standalone tools

‣ no parasitics

• Asynchronous logic tools

❖ Compiler for pipelined asynchronous memory

‣ Preliminary 65nm and earlier process nodes

❖ ACT language and database

❖ Custom circuit design flow

‣ Simulation with hazard finding

‣ Netlist generation

‣ Layout versus schematic

‣ Xyce for analog simulation

E.g: dot product engine, simple µcontroller

Second integration meeting summary

• Parallel tools

❖ SPRoute: a parallel global router (to appear, ICCAD 2019)

❖ Timer

‣ Inner loop of buffer insertion + gate sizing (3rd place, TAU contest 2019)

‣ Re-architected: netlist, delay calculator, parasitics abstracted out

‣ Integrated with async database (ACT)

• Asynchronous logic tools

❖ AMC: async memory compiler (ASYNC 2019, Best paper finalist)

‣ Built-in self-test (BIST) support

‣ 28nm support and 65nm test chip

❖ Preliminary place and route flow

❖ Community support

• GitHub http://github.com/asyncvlsi/{act, AMC}
http://avlsi.csl.yale.edu/act/
http://github.com/IntelligentSoftwareSystems/Galois

http://github.com/asyncvlsi/act
http://avlsi.csl.yale.edu/act/
http://github.com/IntelligentSoftwareSystems/Galois

Parallel static timing analysis

• Parallel STA for synchronous logic

❖ Supports parasitics (.spef)

❖ Used as core library in gate sizing

❖ Refactored to be integration-ready 

• Parallel STA for asynchronous logic

❖ Inherits features of new STA core

❖ Integrated with ACT database 

(was: Verilog + timing arcs file)

update

Full STA Runtime 
(leon2_iccad, 4.1M pins)

m
s

1000

10000

100000

threads

1 10 100

G-dag
G-lv
G-org
other

AMC: Asynchronous Memory Compiler

• Features

❖ New command: read-modify-write
❖ Banking

‣ Sub-banking for better power/

performance at area cost

‣ Flexible orientation

• Updates

❖ 1st version on Github (May 2019)

❖ Built-in self-test (BIST) engine

❖ 65nm tape-out

‣ Thin-cell layout, min area, asymmetric vias

❖ 28nm generator with foundry cells

update

Words Bits Bank Area (um2) Perf. (GHz) Power (uW/MHz) Leakage (uW)
256 8 1 2744 2.4 1.02 2.45
512 8 1 3145 2.1 1.22 2.70

1024 8 2 7410 1.8 2.36 3.95
8192 8 4 49010 2.2 3.60 13.80

Parallel global router new

• The global routing partitions the chip area and forms a grid graph

	

• The capacity of an edge: the number of routing tracks available between two
adjacent gcells.

• The overflow of an edge: the number of wires that exceeds the capacity.

The global routing problem: For every input net, to find a route that connects
all the pins of the net on the grid graph.

❖ Constraint: No overflow (routability).

❖ Objectives: Minimize the total wire length and the number of vias.

gcell

Parallel global router: SPRoute

• SPRoute: A Scalable Parallel Negotiation-based Global Router

❖ To appear, ICCAD 2019

• Exploit nested parallelism and solve the live-lock issue by a novel hybrid
parallelization scheme.

new

Design flow of SPRoute Two phase parallel scheme

Each thread works on a net.

All threads work on the same
net and each net works on a
work item of the frontier

Parallel global router: SPRoute

• SPRoute is implemented in C++ on Galois 4.0; builds on FastRoute

• We evaluate SPRoute on

❖ ISPD 2008 benchmark suite

❖ A 28-core Intel Xeon Gold machine

• Compare with FastRoute 4.1 and NCTU-gr 2.0. (Normalized to SPRoute)

new

Overflow-free Cases (11 benchmarks)

SPRoute FastRoute 4.1 NCTU-gr 2.0 Fast NCTU-gr 2.0 Regular

Wirelength 1.0 0.994 1.024 0.999

#Vias 1.0 0.984 1.085 1.022

Time 1.0 11.0 8.4 10.0

Hard-to-route Cases (4 benchmarks)

SPRoute FastRoute 4.1 NCTU-gr 2.0 Fast NCTU-gr 2.0 Regular

Total overflow 1.0 0.930 5.17 2.477

Wirelength 1.0 0.994 1.03 0.997

#Vias 1.0 0.989 1.03 0.998

Time 1.0 3.1 0.37 80.1

Digital flow new

Design

Expanded
design

Technology
mapping

New cell
generation

Characterizer

Placement

Asynchronous static
timing engine

Routing

Floorplan

Layout
finishing

.lib

.act

.spice

.lef

.rect
.act

.act .def

.def

.gds

Layout editor

.lef

.gds

.v

.v

.def

.spef .act

translation to
proprietary
commands

.def

cell layout

Community

Known users: 9 academic groups; 4 companies

NII Shonan Workshop 2019
async research

community to use ACT

First external contributor:
control logic synthesis

http://avlsi.csl.yale.edu/act

new

http://avlsi.csl.yale.edu/act

Come talk to us!

Rajit Manohar
(Yale)

Keshav Pingali
(UT Austin)

Martin Burtscher
(Texas State)

Aarti Kothari
(routing)

Asynchronous
design & tools

Parallel data-structures
& algorithms

GPU-based
parallelization

Wenmian Hua
(timing analysis)

Michael He
(routing)

Yi-Shan Lu
(timing analysis)

Sepideh Maleki
(placement)

Yihang Yang
(placement)

Dr. Samira Ataei
(memory)

Fa
cu

lty

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

