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Overview and goals

• A parallel design flow for asynchronous logic

❖ Modularity

‣ permitting re-use (similar to software)

‣ “re-compile” only for technology-specific optimization


❖ Minimizes expectations from the implementation technology


• Built more like a software compiler than current EDA tools

❖ Operate on a core database

❖ “Passes” for optimization

❖ Share analysis phases at multiple levels of abstraction

‣ High-level design

‣ Circuit

‣ Physical
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First integration meeting summary

• Parallel tools

❖ Synchronous static timing analysis (STA) + asynchronous STA

‣ standalone tools

‣ no parasitics


• Asynchronous logic tools

❖ Compiler for pipelined asynchronous memory

‣ Preliminary 65nm and earlier process nodes


❖ ACT language and database

❖ Custom circuit design flow

‣ Simulation with hazard finding

‣ Netlist generation

‣ Layout versus schematic

‣ Xyce for analog simulation

E.g: dot product engine, simple µcontroller



Second integration meeting summary

• Parallel tools

❖ SPRoute: a parallel global router (to appear, ICCAD 2019)

❖ Timer

‣ Inner loop of buffer insertion + gate sizing (3rd place, TAU contest 2019)

‣ Re-architected: netlist, delay calculator, parasitics abstracted out

‣ Integrated with async database (ACT)


• Asynchronous logic tools

❖ AMC: async memory compiler (ASYNC 2019, Best paper finalist)

‣ Built-in self-test (BIST) support

‣ 28nm support and 65nm test chip


❖ Preliminary place and route flow

❖ Community support


• GitHub http://github.com/asyncvlsi/{act, AMC}
http://avlsi.csl.yale.edu/act/
http://github.com/IntelligentSoftwareSystems/Galois

http://github.com/asyncvlsi/act
http://avlsi.csl.yale.edu/act/
http://github.com/IntelligentSoftwareSystems/Galois


Parallel static timing analysis

• Parallel STA for synchronous logic

❖ Supports parasitics (.spef)

❖ Used as core library in gate sizing

❖ Refactored to be integration-ready 

• Parallel STA for asynchronous logic

❖ Inherits features of new STA core

❖ Integrated with ACT database 

(was: Verilog + timing arcs file) 

update

Full STA Runtime 
(leon2_iccad, 4.1M pins)
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AMC: Asynchronous Memory Compiler

• Features

❖ New command: read-modify-write 
❖ Banking

‣ Sub-banking for better power/

performance at area cost

‣ Flexible orientation


• Updates

❖ 1st version on Github (May 2019)

❖ Built-in self-test (BIST) engine

❖ 65nm tape-out

‣ Thin-cell layout, min area, asymmetric vias


❖ 28nm generator with foundry cells

update

Words Bits Bank Area (um2) Perf. (GHz) Power (uW/MHz) Leakage (uW)
256 8 1 2744 2.4 1.02 2.45
512 8 1 3145 2.1 1.22 2.70

1024 8 2 7410 1.8 2.36 3.95
8192 8 4 49010 2.2 3.60 13.80



Parallel global router new

• The global routing partitions the chip area and forms a grid graph

	 


• The capacity of an edge: the number of routing tracks available between two 
adjacent gcells.


• The overflow of an edge: the number of wires that exceeds the capacity.

The global routing problem: For every input net, to find a route that connects 
all the pins of the net on the grid graph.


❖ Constraint: No overflow (routability).

❖ Objectives: Minimize the total wire length and the number of vias.

gcell



Parallel global router: SPRoute

• SPRoute: A Scalable Parallel Negotiation-based Global Router

❖ To appear, ICCAD 2019 

• Exploit nested parallelism and solve the live-lock issue by a novel hybrid 
parallelization scheme.

new

Design flow of SPRoute Two phase parallel scheme

Each thread works on a net.

All threads work on the same 
net and each net works on a 
work item of the frontier



Parallel global router: SPRoute

• SPRoute is implemented in C++ on Galois 4.0; builds on FastRoute

• We evaluate SPRoute on 


❖ ISPD 2008 benchmark suite

❖ A 28-core Intel Xeon Gold machine


• Compare with FastRoute 4.1 and NCTU-gr 2.0. (Normalized to SPRoute)

new

Overflow-free Cases (11 benchmarks)

SPRoute FastRoute 4.1 NCTU-gr 2.0 Fast NCTU-gr 2.0 Regular

Wirelength 1.0 0.994 1.024 0.999

#Vias 1.0 0.984 1.085 1.022

Time 1.0 11.0 8.4 10.0

Hard-to-route Cases (4 benchmarks)

SPRoute FastRoute 4.1 NCTU-gr 2.0 Fast NCTU-gr 2.0 Regular

Total overflow 1.0 0.930 5.17 2.477

Wirelength 1.0 0.994 1.03 0.997

#Vias 1.0 0.989 1.03 0.998

Time 1.0 3.1 0.37 80.1



Digital flow new
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Community

Known users: 9 academic groups; 4 companies

NII Shonan Workshop 2019 
async research 

community to use ACT

First external contributor: 
control logic synthesis

http://avlsi.csl.yale.edu/act

new

http://avlsi.csl.yale.edu/act
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