
IDEA: LSOracle
A learning-based Oracle for Automatic Logic 

Optimization

IDEA and POSH Phase I Integration Session and Demos
Detroit, MI

15 July 2019 – 19 July 2019 

Prof. Pierre-Emmanuel Gaillardon, Dr. Xifan Tang
Scott Temple, Walter Lau, Max Austin

University of Utah

1



• LSOracle is available on GitHub: https://github.com/LNIS-Projects/LSOracle

2

LSOracle: OPDB Chip Bridge Demo



• A typical EDA flow is comprised of a complex chain of tools
• Three main steps: behavioral synthesis, logic synthesis and physical synthesis

• Synthesis is at the forefront of EDA:
• Strong impact on downstream tools

3

Electronic Design Automation (EDA) Workflow

HDL Description

Behavioral 
Synthesis

Logic Synthesis

Physical Design

DAG 
representation

DAG 
Optimization

Technology 
mapping

Technology Independent 
Optimization

b ac

S co

AIG :
7 nodes

4 levels of logic

a c b

S

MIG:
3 nodes

2 levels of logic

Full Adder Representation

co



• For the full adder, MIG is more compact, but what about other circuits?
• Considering a dataset of 8,327 combinational circuits

• 35.7% perform better with MIG : usually arithmetic logic
• 64.3% perform better with AIG : control/random logic

4

Technology Independent Logic Optimization

MIG

Complex designs have mixed logic!

Can we automatically select the best DAG representation and the best optimization
approach for different logic blocks on the circuit?

AIG



Open-source library KaHyPar
Open-source library

Frugallydeep

5

Automatic learning-based logic synthesis framework

RTL Schematic

Partitioning

Circuit Classification

Logic Optimization

Partition Merging

Technology Mapping

…

LSOracle

AND

NAND NOR

NOT

NOT

AND

AND

OR

a

b

c
d

y

z

OR

NOT x

XOR

AND
b
a x

y

NOT
AND

a
c z

MIG-based logic optimizer 
& technology mapper

AIG-based logic optimizer 
& technology mapper

XOR

AND
b
a

x

yNO
T

ANDc z

Circuit merging…

……

……

EPFL Logic 
Synthesis Libraries



6

LSOracle Framework: Current Status

All partitions are treated and optimized by different methods, taking advantage of different 
optimizers for different structures

LSOracle Flow 

Partitioning

MIGAIG

Partition X

min (#nodes x logic depth)

Grader

Synchronize optimized 
partition

Partition X

Optimized DAG



7

LSOracle Flow Example

a b c d e f

x y z

LSOracle High Effort

Partitioning

MIGAIG

Partition X

min (#nodes x logic depth)

Grader

Synchronize optimized 
partition

Partition X

Optimized DAG



8

LSOracle Flow Example – cont’d

LSOracle High Effort

Partitioning

0 00 0

0 0 0

1

1
1 1

1
1 1
1

a b c d e f

x y z



9

LSOracle Flow Example – cont’d

LSOracle High Effort

MIGAIG

Partition X

0 00 0

0 0 0

1

1
1 1

1
1 1
1

a b c d e f

x y z

AIG optimized: 7 nodes, 4 levels 

MIG optimized: 5 nodes, 2 levels 

Initial: 8 nodes, 4 levels

AIG optimized: 6 nodes, 2 levels 

MIG optimized: 7 nodes, 2 levels 

Initial: 7 nodes, 2 levels

Partition 1:

Partition 0:



10

LSOracle Flow Example – cont’d

LSOracle High Effort

min (#nodes x logic depth)

Grader

0 00 0

0 0 0

1

1
1 1

1
1 1
1

a b c d e f

x y z

AIG optimized: 7 nodes, 4 levels 
MIG optimized: 5 nodes, 2 levels 

Initial: 8 nodes, 4 levels

AIG optimized: 6 nodes, 2 levels 
MIG optimized: 7 nodes, 2 levels 

Initial: 7 nodes, 2 levels

Partition 1:

Partition 0:



11

LSOracle Flow Example – cont’d

LSOracle High Effort

Synchronize optimized 
partition

Partition X

Optimized DAG

0 00

0 0 0

1

1
1 1

1

a b c d e f

x y z

0

0 00

0 0

0

0

From 15 nodes and 6 levels of logic to 11 nodes and 4 levels



12

• Benchmark: Chip Bridge from OPDB mapped using ASAP 7nm 
• 124k nodes; 7× > than PicoRV; 1000× > than the example presented in January
• Runtime ~5 minutes on mobile core i5

• All optimization flows based on ABC’s resyn2 script

Integrated Flow Demo

ADP improved by ~12% 
Compared to AIG 

PDP improved by ~10% 
Compared to AIG EDP improved by ~18% 

Compared to AIG 



13

Post-tech Mapping ASIC Results

• 10 circuits from OPDB, OpenCores and EPFL
• Circuits mapped using ASAP 7nm 
• All optimization flows based on ABC’s resyn2 script

ADP improved by ~7.3% 
Compared to AIG 

PDP improved by ~8.17% 
Compared to AIG 

EDP improved by ~12.9% 
Compared to AIG 



14

Improving Performance Through Partition Merging

• In Mixed Synthesis mode, partitions may 

cause a loss in QoR

• Optimizing the largest regions possible is 

desirable

• We have implemented a feature that 

merges adjacent partitions which have 

been classified as the same type

• This gives larger partitions which are less 

likely to break up important functionality

MIG performance on 

partitioned vs original 

network, showing loss 

of global optimization. 

(AIG normalized to 1)



15

Partition Merging

MIG

MIG

MIGAIG

AIG
MIG

AIG

Before merging: Many partitions
Of similar size

After merging: Minimal number
of large partitions, while 
maintaining mixed synthesis 
approach



1616

Partition Merging: LUT Tech Mapping

Fewer, larger partitions to reduce loss of global 
optimization



• LSOracle alpha version released
• Fully integrated flow
• Evaluated in circuits with more than 100,000 nodes 
• Handles thousands of partitions

• Two main operation modes
• LSOracle alpha
• LSOracle developmental deep learning classifier

• Post-tech mapping results presented over 10 new circuits
• ADP, PDP and EDP improved when compared to only AIG or MIG optimization 

• Fork us: https://github.com/LNIS-Projects/LSOracle

17

Summary

https://github.com/LNIS-Projects/LSOracle


The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the 
official views or policies of the Department of Defense or the U.S. Government. 18

Thank you!
Q & A


