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• LSOracle is available on GitHub: https://github.com/LNIS-Projects/LSOracle
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LSOracle: OPDB Chip Bridge Demo



• A typical EDA flow is comprised of a complex chain of tools
• Three main steps: behavioral synthesis, logic synthesis and physical synthesis

• Synthesis is at the forefront of EDA:
• Strong impact on downstream tools
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Electronic Design Automation (EDA) Workflow
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• For the full adder, MIG is more compact, but what about other circuits?
• Considering a dataset of 8,327 combinational circuits

• 35.7% perform better with MIG : usually arithmetic logic
• 64.3% perform better with AIG : control/random logic
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Technology Independent Logic Optimization

MIG

Complex designs have mixed logic!

Can we automatically select the best DAG representation and the best optimization
approach for different logic blocks on the circuit?

AIG



Open-source library KaHyPar
Open-source library

Frugallydeep
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Automatic learning-based logic synthesis framework

RTL Schematic
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LSOracle Framework: Current Status

All partitions are treated and optimized by different methods, taking advantage of different 
optimizers for different structures

LSOracle Flow 
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LSOracle Flow Example
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LSOracle Flow Example – cont’d
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LSOracle Flow Example – cont’d
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AIG optimized: 7 nodes, 4 levels 
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LSOracle Flow Example – cont’d
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LSOracle Flow Example – cont’d

LSOracle High Effort
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• Benchmark: Chip Bridge from OPDB mapped using ASAP 7nm 
• 124k nodes; 7× > than PicoRV; 1000× > than the example presented in January
• Runtime ~5 minutes on mobile core i5

• All optimization flows based on ABC’s resyn2 script

Integrated Flow Demo

ADP improved by ~12% 
Compared to AIG 

PDP improved by ~10% 
Compared to AIG EDP improved by ~18% 

Compared to AIG 
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Post-tech Mapping ASIC Results

• 10 circuits from OPDB, OpenCores and EPFL
• Circuits mapped using ASAP 7nm 
• All optimization flows based on ABC’s resyn2 script

ADP improved by ~7.3% 
Compared to AIG 

PDP improved by ~8.17% 
Compared to AIG 

EDP improved by ~12.9% 
Compared to AIG 
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Improving Performance Through Partition Merging

• In Mixed Synthesis mode, partitions may 

cause a loss in QoR

• Optimizing the largest regions possible is 

desirable

• We have implemented a feature that 

merges adjacent partitions which have 

been classified as the same type

• This gives larger partitions which are less 

likely to break up important functionality

MIG performance on 

partitioned vs original 

network, showing loss 

of global optimization. 

(AIG normalized to 1)
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Partition Merging

MIG

MIG

MIGAIG

AIG
MIG

AIG

Before merging: Many partitions
Of similar size

After merging: Minimal number
of large partitions, while 
maintaining mixed synthesis 
approach
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Partition Merging: LUT Tech Mapping

Fewer, larger partitions to reduce loss of global 
optimization



• LSOracle alpha version released
• Fully integrated flow
• Evaluated in circuits with more than 100,000 nodes 
• Handles thousands of partitions

• Two main operation modes
• LSOracle alpha
• LSOracle developmental deep learning classifier

• Post-tech mapping results presented over 10 new circuits
• ADP, PDP and EDP improved when compared to only AIG or MIG optimization 

• Fork us: https://github.com/LNIS-Projects/LSOracle
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Summary

https://github.com/LNIS-Projects/LSOracle


The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the 
official views or policies of the Department of Defense or the U.S. Government. 18

Thank you!
Q & A


