ORDER: Open-Source Rooted Design Experts with Repute

Integration Meeting July 2019
Princeton University and
University of Washington
SoC Design Advisor Team

David Wentzlaff
Professor at Princeton, EE
Tilera Co-founder & Lead Architect
MIT PhD & MS, UIUC BS
Research in Manycore, Cloud Systems, and Biodegradable Computing
Runs OpenPiton Project

C.-J. Richard Shi
Professor at University of Washington, ECE
Founder of Orora Design Technologies, Inc, a pioneer in automated analog design and verification
PI on multiple DoD/DARPA projects (NZERO, RHBD, 3DIC NeoCAD)

Michael B. Taylor
Professor at University of Washington, CSE & ECE
MIT PhD & MS
Earliest research on Dark Silicon, Tiled Multicore, ASIC Clouds RISC-V manycore
OpenCelerity and BaseJump open source projects
ORDER Project Overview

• Fulfill role of SoC Design Advisors to help DARPA create a pushbutton CAD technology that accelerates the rate of progress by making chip design easier
• Independent team of hardware design experts with a strong track record in open source and open collaboration, and design in advanced process nodes
• Provide requirements, feedback, designs, and real world design experience to TA-1 toolflow teams
• Build and Fabricate Chips, Boards, and SiP Package using IDEA tools
Building Open Source SoCs with IDEA Tools

We are excited to use your tools!
Building Open Source SoCs with IDEA Tools

We are excited to use your tools!
Building Open Source SoCs with IDEA Tools

We are excited to use your tools!

Image Credit: DARPA IDEA BAA
Building Open Source SoCs with IDEA Tools

We are excited to use your tools!

Image Credit: DARPA IDEA BAA
Outline

- **Benchmarks**
 - OpenPiton Design Benchmark
 - Demo
 - BSG Pipeclean Testsuite
 - UW Idea Analog Test Cases

- **Tools and Formats**
 - IDEA Dimensionless Format (IDF)
 - SV to Verilog
 - Demo
Enabling IDEA Through Convenient Benchmarks

World’s first release of hundreds of high-quality, open-source, self-contained (Pickled into single file) hardware designs.

• Creation of “Pickling” flow to generate hundreds of easy to ingest HW designs.
• Release of high quality, complex, open-source HW designs supporting IDEA tool developers.
 – OpenPiton Design Benchmark
 – IDEA Analog Test Cases
 – BSG Pipeclean Suite

Challenges Addressed:
• HW designs require users to use complex build flows/infrastructure. Our “Pickled” designs enable CAD tool designers to only look at one file.
• CAD tool designers are in dire need for high-quality, non-trivial, open-source designs. We provide hundreds.
OpenPiton Design Benchmark

- Based on the OpenPiton open-source research processor
- 24 different modules
 - Variety of sizes, functionalities, core counts
- 636 “pickled” Verilog designs
 - Instantiation of modules with different configuration parameters
- Includes floorplan and .sdc files for multiple configurations
- Built “pickling” tool (Tursi) using FuseSoC

https://github.com/PrincetonUniversity/OpenPiton
https://github.com/PrincetonUniversity/OPDB
OpenPiton Design Benchmark Open Source Tools Demo

1. Create single “pickled” file of dynamic node module using Tursi (FuseSoC + Icarus Verilog)
2. Synthesize “pickled” file with a given library using Yosys
3. Compile playback driver module and synthesized pickle file into an executable using Icarus Verilog
4. Simulation with test stimuli
IDEA Analog Test Cases

https://github.com/uwidea/UW-IDEA_AnalogTestCases

- Collating pre-existing, developed for other projects, and developed for ORDER analog test cases into test suite
- Hierarchical schematics
- CDL files describe circuit (SPICE Netlist)
- Documentation and simulation results to enable others to match results
- Working to extend to larger test suite
- Exercising IDEA tools from: Purdue, Sandia, UMinn, UT-Austin
BSG Pipeclean Benchmark Suite

https://github.com/bespoke-silicon-group/bsg_pipeclean_suite

small_comb: 8 bit multiplier
medium_comb: 32-bit multiplier
large_comb: 128-bit multiplier

black_parrot_be_only_2019_03_11: Back end (be) of early version of black parrot
black_parrot_fe_only_2019_03_11: Front end (fe) of early version of black parrot
black_parrot_2019_03_28: Entire Black Parrot RISC-V core with reduced size crossbars
 Less challenging routing problem
black_parrot_2019_03_11: Entire Black Parrot RISC-V core with full crossbars
 More challenging routing problem

All of these designs work with commercial tools; use IDF dimensionless format
Outline

• Benchmarks
 – OpenPiton Design Benchmark
 • Demo
 – BSG Pipeclean Testsuite
 – UW Idea Analog Test Cases

• Tools and Formats
 – IDEA Dimensionless Format (IDF)
 – SV to Verilog
 • Demo
Refining the IDF (IDEA Dimensionless Format)

New technology allowing open-source collaborators to share physical design descriptions of chips “in the clear” without violating NDAs.

- IDEA Dimensionless Format (IDF)
 - Simple, coherent coarse floorplan spec allowing open-sourced physical design constraints.
 - Dimensionless = All units are PDK agnostic revealing no sensitive info (NDA safe)
 - IDF-to-DEF converter for turnkey integration into existing CAD tool infrastructure and EDA vendor compatibility.
 - 30.7s to go from IDF file to floorplan in IC Compiler for TSMC 40nm.
- Challenge: IDF excels at moving between similar PDKS but moving between dissimilar PDKs (process node, SRAM compiler) will require the intelligence of a tool like OpenROAD to adjust.

https://github.com/bespoke-silicon-group/bsg_idf_tools

IDF specified in collaboration with UW (Taylor), Princeton, Michigan, Andreas, and Greater IDEA Team from San Diego Meeting
Providing A Pathway for SystemVerilog to Open Source

First open source conversion infrastructure to allow academics to export modern HW designs in SystemVerilog for use with open-source tools.

- **SystemVerilog to Verilog RTL Converter (bsg_sv2v)**
 - Converts cutting edge hardware designs written in SystemVerilog (SV) to a single Verilog 2005 compliant RTL file for maximum compatibility with currently available open-source CAD tools.
 - Extensible framework for post-converted optimizations.
 - Reg-Redux: For a CPU frontend, improved VCS sim speed by 2.3x and LoC by 2.8x over un-optimized pickled netlist.

- **Challenge:** Tools may differ in their interpretation of SystemVerilog. We use Design Compiler as our parser since all academics have it, and it is the industry standard, and post-process the output to regenerate Verilog.

Open-source CAD Tools

- Verilator
- Icarus Verilog
- YOSYS
- Design Compiler

Commercial CAD Tools

- VCS

https://github.com/bespoke-silicon-group/bsg_sv2v

UW (Taylor)
ORDER: Open-Source Rooted Design Experts with Repute

- OpenPiton Design Benchmark - https://github.com/PrincetonUniversity/OPDB
- UW IDEA Analog Test Cases - https://github.com/uwidea/UW-IDEA_AnalogTestCases
- System Verilog to Verilog Flow https://github.com/bespoke-silicon-group/bsg_sv2v
- OpenPiton GitHub - https://github.com/PrincetonUniversity/openpiton
- Open Celerity - http://opencelerity.org
- BaseJump - http://bjump.org
The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.