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• The full Hamiltonian including the strong Coulomb interaction is used to describe the behavior of CeRAM
• (The strong Coulomb interaction is ignored in semiconductors, we use the single electron approximation)
• The kinetic term (hopping) describes carriers as they move through the lattice
• The potential term results from the strong electron-electron interaction. This interaction causes a large potential U which ultimately becomes the bandgap 

of the material. This happens when the electrons are strongly localized thereby maximizing U
• The chemical potential is determined by doping and charge injection (both holes and electrons). The doping is set for a target devices while the injection 

of electrons and/or holes is used to toggle between the high and low resistance states

• CMOS is not a good synaptic switch
• It is widely accepted that non-volatile memory (NVM) is the most likely 

device candidate to be used as a synaptic switch (synapse and/or neuron)
• ReRAM (including CBRAM) devices are electro-mechanical switches which 

suffer from variability and failure in the low resistant state
• STT-MRAM suffers from a small difference between on and off states which 

does not allow for multibit weighting required for neuromorphic compute
• CeRAM (correlated electron RAM) is a true quantum mechanical electronic 

resistive RAM which is filament and mechanical switching free
• CeRAM uses the Mott transition in order to switch between low and high 

resistance states

• Carbon doping is used to achieve a stable correlated electron material for the CeRAM device by ensuring that the correct stoichiometry is achieved to 
allow for the disproportionation reaction (essentially forming a defect free interface and device)

• Carbon doping allows for sigma-bonding  donation and pi-bonding backdonation which ensures that the material is p-type as hole conduction is critical 
for the device operation

Candidate Synaptic Switches

CeRAM Operation

CeRAM Construction

• The Mott transition is a disproportionation reaction (the same element is oxidized and reduced)
• This is realized by the transfer of electrons between orbitals (CeRAM is an orbital switch with a length scale on the order of the Bohr radius)

• Vapor Pressure
• Thermal Stability
• Composition

• Precursor Pyrolysis Curve
• Precursor Saturation
• Co-reactant Saturation
• Purge Saturation
• Saturated Temperature Window
• Substrate Interaction

• Explore Sub-Saturated Regimes 
(Precursor/Co-reactant/Purge)

• Reactivity of co-reactants (different 
oxidation sources)

• Deposition Method (ALD/CVD/SPD)
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Meas. data:ZAH41 PB-PSA GA 10-90D 2
BG data:ZAH41 PB-PSA GA 10-90D 2
Calc. data:ZAH41 PB-PSA GA 10-90D 2
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tetragonal MO phase
A minor amorphous phase 

Meas. data:ZAH43 PB-PSA GA 10-90D 2
BG data:ZAH43 PB-PSA GA 10-90D 2
Calc. data:ZAH43 PB-PSA GA 10-90D 2
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Tetragonal and cubic 
MO phases Whole film is 
crystalized.

a) Resist for Liftoff
b) Digital Litho: Pattern 

transfer and 
expose/develop

c) Deposit Pt (150nm)

d) Liftoff resist

e) Ar Sputter 
through MO

a) Process on 
300mm until MO 
dep is complete

b) Resist for Liftoff
c) Digital Litho: 

Pattern transfer 
and 
expose/develop

d) Deposit Pt 
(150nm)

e) Liftoff resist
f) Ar Sputter through 

NiOC

Key Advantages: 
• 50 experiments out of 

every single wafer
• 100 nm pillars limits the 

device area

1µm - 100µm Blanket MIMCAP 100nm - 500nm Planar MIMCAP

New Material Development

Property Metric Method M 1 M 2 M 3 M 4 M 5 M 6 M 7

Device

Jon
3000 - 6000 
A/cm2 E- test 4000 1720 12000 9000 5000 768 12000

Vset 1- 2V E- test 6V 2V 5V 5V 2V 4V 2V
Vreset 50% Vset E- test 0.5V 0.8V 0.9V 0.7V 0.8V 0.7V 0.8V
Born - on Yes E- test Yes Yes Yes Yes Yes Yes Yes
Non- polar Yes E- test Yes Yes Yes Yes Yes No Yes

Process

C % 1 to 20%C XPS 6.5% 3.7% 10% 4.3 4.9 2.9% 4.4
Thickness 
uniformity

(+/ - ) 10% 
throughout bulk XPS Yes Yes Yes Yes Yes Yes Yes

Continuity
No exposed 
bottom electrode TEM Yes Yes Yes No N/A Yes No

Initial E-Test Data for Final Material Selection in Phase 1

Three materials have been selected for “deep dive” device development in Phase 2

• 4 wire measurement with pads on surface of NiO
• Ti/Au pads 5nm/100nm thickness
• Opposing sets of current and voltage leads
• 5 µm spacing between opposing contacts
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Modeling and Mechanism Determination
Hall Effect Test Vehicle

DFT + U Simulations to help guide 
experimental direction

SyNCED: Synapses and Neurons using Correlated Electron Devices 
• Development of a correlated electron switch (CES) as a radiation-hard high-temperature tolerant non-volatile logic switch for 

post-Moore sub 5nm nodes
• CES is capable of replicating the function of a neuron and synapse for neuromorphic compute, which holds the promise to 

have five orders of magnitude more power efficiency versus current von Neumann compute
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