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Specialized Functions: Lifelong Learning Machines (L2M)

RESEARCH OBJECTIVES APPROACH

Develop a comprehensive approach to lifelong machine learning in autonomous systems that includes:

A general-purpose continual learning framework that integrates classification, regression, and reinforcement learning
o Safe knowledge transfer between diverse tasks

o Scalable lifelong knowledge maintenance of structured, composable knowledge
o Self-directed learning for autonomous discovery
 Modeling the non-stationary distribution of tasks
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