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Programming Model (PM)

• Add high-level primitives to current Intrepydd language
• Primitives include map, partition, reduce, etc. 

Simplify programming and high-quality parallel code generation
• For example, the following map operation:

• Can be translated to: 

1. Goals:
• New software tool chain to 

accelerate data-intensive 
workflows with near-ASIC 
performance, and programmability 
of Python

• Dynamically reconfigure hardware 
to match data and algorithm 
requirements

2. Current practice:
• H/w reconfiguration is orders 

of magnitude slower than 1μs
• Tool chains do not dynamically 

reconfigure hardware nor 
exploit data characteristics

• Programmability of current tool 
chains for accelerators is only 
accessible to “ninja” experts

4. Impact:
• Near-ASIC performance for 

data-intensive algorithms with 
high programmability

• Transition to open 
source/vendor products

• Adoption by transition partners 
in DoD community

3. Novelty:
• Dynamic data-driven co-

optimization of algorithmic 
variants, hardware configurations 
and code transformations

• Mapping of high-level Python-
based Intrepydd programming 
model to reconfigurable hardware
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• Generate all 
variants and 
store them in a 
library

• Use input data + 
knowledge base 
to select best 
variant at 
runtime

• Record runtimes 
in knowledge 
base for future 
use

● Collect sample values
● Reduce bitwidth

○ Evaluate requirements
● Maximize energy saving

● Detect precision violations
● Integer: Hardware provides low 

cost detection
● Floating-point: Use application-

level error metrics for detection
● Trigger profiling and 

reconfiguration

● User defined bitwidth
● Enable low cost 

hardware
● Must handle worst case

• Lowest level run-time of DDARING that interfaces to the specifics of the TA1 architecture.
• Profiling is input into the trained LSTM to detect phase changes during dynamic execution.
• When a new phase is detected, it is looked up in a code & configuration cache (CCC)
where cache misses from this are handled by the knowledge base (which in turn was
populated by the auto-tuner)
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