DDARING: Dynamic Data-Aware Reconfiguration, INtegration & Generation

V. Sarkar¹, T. Conte¹, J. Shirako¹, R. Vuduc¹, D. Chen², W.-M. Hwu², S. Mahlke³, V. Prasanna⁴

¹Georgia Tech, ²University of Illinois, ³University of Michigan, ⁴University of Southern California

Distribution Statement A – Approved for Public Release, Distribution Unlimited.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Specialized Functions: Software Defined Hardware (SDH)

Input Datasets
- Ingest
- Map
- Analyze

Output Datasets
- Output

Overview

DDARING Software Tool Chain (TA2)

- Intrepydd Programming Model (IPM)
- Static Data-aware Optimizer (SDO)
- Dynamic Kernel Reoptimization (DKR)
- Auto-tuning & Reconfiguration (AR)

Knowledge Base: Kernels, Data Access Patterns, Configurations (KB)

Approach

Programming Model (PM)

- **Add high-level primitives to current Intrepydd language**
 - Primitives include map, partition, reduce, etc.
 - Simplify programming and high-quality parallel code generation

- **For example, the following map operation:**

  ```
  c * map(\(y, \{a, b, c, d, e, f, g, h, i\}\) => \((a+b+c+c)+d+e+f+g+h+i\));
  ```

 Can be translated to:

  ```
  c + map(y => x => c + x, [a, b, c, d, e, f, g, h, i]);
  ```

Static Data-aware Optimizer (SDO)

- **Generate all variants and store them in a library**
- **Use input data + knowledge base to select best variant at runtime**
- **Record runtimes in knowledge base for future use**

Dynamic Kernel Reoptimization (DKR)

- **Best programmer effort**
 - Use input data + knowledge base to select best variant at runtime

Auto-tuning & Reconfiguration (AR)

- **Lightweight run-time of DDARING that interfaces to the specifics of the TA1 architecture.**
 - Profiling is input into the trained LSTM to detect phase changes during dynamic execution.
 - When a new phase is detected, it is looked up in a code & configuration cache (CCC) where cache misses from this are handled by the knowledge base (which in turn was populated by the auto-tuner).

Answers to Heilmeier Questions 1 to 4

1. **Goals:**
 - New software tool chain to accelerate data-intensive workflows with near-ASIC performance, and programmability of Python
 - Dynamically reconfigure hardware to match data and algorithm requirements

2. **Current practice:**
 - H/w reconfiguration is orders of magnitude slower than 1μs
 - Tool chains do not dynamically reconfigure hardware nor exploit data characteristics
 - Programmability of current tool chains for accelerators is only accessible to “ninja” experts

3. **Novelty:**
 - Dynamic data-driven co-optimization of algorithmic variants, hardware configurations and code transformations
 - Mapping of high-level Python-based Intrepydd programming model to reconfigurable hardware

4. **Impact:**
 - Near-ASIC performance for data-intensive algorithms with high programmability
 - Transition to open source/vendor products
 - Adoption by transition partners in DoD community

Run & check

- **Detect precision violations**
- **Integer: Hardware provides low cost detection**
- **Floating-point: Use application-level error metrics for detection**
- **Trigger profiling and reconfiguration**

Distribution Statement A – Approved for Public Release, Distribution Unlimited.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

www.darpa.mil

PI & POC: Vivek Sarkar
Email: vsarkar@gatech.edu

V. Sarkar¹, T. Conte¹, J. Shirako¹, R. Vuduc¹, D. Chen², W.-M. Hwu², S. Mahlke³, V. Prasanna⁴

¹Georgia Tech, ²University of Illinois, ³University of Michigan, ⁴University of Southern California

Specialized Functions: Software Defined Hardware (SDH)

Knowledge Base (KB)

- **Workflows**
- **Kernel/Task**
- **HW Configurations**

Auto-Tuning & Reconfiguration (AR)

- **Profile monitor**
- **Profile monitor**
- **Profile monitor**

Code & Configuration Cache (CCC)

- **Architecturespecific**
- **Code & Configuration Cache (CCC)**
- **Knowledge Base**
- **Auto-Tuner**

Distribution Statement A – Approved for Public Release, Distribution Unlimited.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

www.darpa.mil

PI & POC: Vivek Sarkar
Email: vsarkar@gatech.edu