
Distribution Statement A – Approved for Public Release, Distribution Unlimited.
This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).            

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

www.darpa.mil

S pec ialized F unc tions :  S of tw are Def ined Hardw are (S DH)

DDARING: Dynamic Data-Aware Reconfiguration, INtegration & Generation

Dynamic Kernel Reoptimization (DKR)

Auto-Tuning & Reconfiguration (AR)Knowledge Base (KB)

DDARING

Static Data-aware Optimizer (SDO)

PI & POC: Vivek Sarkar
Email: vsarkar@gatech.edu

Programming Model (PM)

• Add high-level primitives to current Intrepydd language
• Primitives include map, partition, reduce, etc. 

Simplify programming and high-quality parallel code generation
• For example, the following map operation:

• Can be translated to: 

1. Goals:
• New software tool chain to 

accelerate data-intensive 
workflows with near-ASIC 
performance, and programmability 
of Python

• Dynamically reconfigure hardware 
to match data and algorithm 
requirements

2. Current practice:
• H/w reconfiguration is orders 

of magnitude slower than 1μs
• Tool chains do not dynamically 

reconfigure hardware nor 
exploit data characteristics

• Programmability of current tool 
chains for accelerators is only 
accessible to “ninja” experts

4. Impact:
• Near-ASIC performance for 

data-intensive algorithms with 
high programmability

• Transition to open 
source/vendor products

• Adoption by transition partners 
in DoD community

3. Novelty:
• Dynamic data-driven co-

optimization of algorithmic 
variants, hardware configurations 
and code transformations

• Mapping of high-level Python-
based Intrepydd programming 
model to reconfigurable hardware

V. Sarkar1, T. Conte1, J. Shirako1, R. Vuduc1, D. Chen2, W.-M. Hwu2, S. Mahlke3, V. Prasanna4

1Georgia Tech, 2University of Illinois, 3University of Michigan, 4University of Southern California

• Generate all 
variants and 
store them in a 
library

• Use input data + 
knowledge base 
to select best 
variant at 
runtime

• Record runtimes 
in knowledge 
base for future 
use

● Collect sample values
● Reduce bitwidth

○ Evaluate requirements
● Maximize energy saving

● Detect precision violations
● Integer: Hardware provides low 

cost detection
● Floating-point: Use application-

level error metrics for detection
● Trigger profiling and 

reconfiguration

● User defined bitwidth
● Enable low cost 

hardware
● Must handle worst case

• Lowest level run-time of DDARING that interfaces to the specifics of the TA1 architecture.
• Profiling is input into the trained LSTM to detect phase changes during dynamic execution.
• When a new phase is detected, it is looked up in a code & configuration cache (CCC)
where cache misses from this are handled by the knowledge base (which in turn was
populated by the auto-tuner)

Answers to Heilmeier Questions 1 to 4Overview

Approach

D

T, C

T, C

K1, K2

K1

K2

D


