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PHASE 1: Language-Managed Parallelism
• Task-parallelism via parallel execution of comprehensions and folds
• Data-parallelism via hardware-supported primitive operations on vectors, matrices, ...
• Libraries and abstractions to protect users from complexity
• Accomplishment: automated multi-threading for high-level programs on target hardware

PHASE 2: Data-Dependent Run-time Kernel Selection

PHASE 3: Safe Approximation
• Getting good answers fast is often better than calculating perfect answers too late
• Built-in compile-time static analysis and run-time instrumentation determine when it is safe to use approximate kernels
• Builds on Phase 2 automatic kernel selection mechanism to realize additional algorithm accelerations

• Whole-program compilation enables automatic instrumentation
based on annotated kernel choice-points in standard language libraries

• Data statistics collected and used to automatically select kernels and insert representation coercions at run-time
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The MITCHELL programming language enables data scientists and 
machine learning practitioners to write performant machine learning and 
graph analytics programs that leverage highly-parallel hardware.

The MITCHELL compiler, runtime, and libraries provide language-
managed parallelism, data-dependent run-time kernel selection, and 
safe approximation, thus enabling developers to specify algorithms 
easily while achieving high performance. 

• No data dependency
• Minimal synchronization

• Loop carry dependency
• Tiling analysis Multiple Integrated Threading Models

See Mitchell Runtime diagram to far left

• Comprehensions and folds provide task-parallelism
• Run on single-threaded pipelines (STPs)

• Primitive operations provide data-parallelism
• Run on multi-threaded pipelines (MTPs)

Efficient Primitive Operations
• Specialized to SDH

hardware
• Libraries for matrices,

vectors, graphs,
decision trees, ...

High-Level Programming Targets Bare-Metal Hardware 
With Massive Parallelism
• Parallelism without explicit concurrency

• Programmers take advantage of parallel hardware without 
explicit thread and synchronization management

• Hardware support for performant language primitives

Automatic Parallelization And Optimization

BLAS & GSL Primitives With Hardware Support
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Calculating the Update for Gradient-Boosted Decision Trees

fun ca lcu la t e Up d a t e gb d t d a t a  le a rn ingRa t e =
le t

fun los s (fe a t u re s , la b e l) = los s R gb d t (fe a t u re s , la b e l)
va l d a t a Gra d ie n t = Lis t .m a p los s  d a t a
va l d t = CART.t ra in d a t a Gra d ie n t
va l fa m ily = CART.p rune d t d a t a
va l a vg = a ve ra ge Of_i (fn (_, d t ) => DT.le a fNum d t ) fa m ily
fun com p le ft  righ t  = com p a re Le a ve s a vg le ft  righ t
va l b e s t = a rgm a x com p  fa m ily
va l d t = ca s e b e s t  of NONE => d t | SOME (_, x) => x
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