
Distribution Statement A – Approved for Public Release, Distribution Unlimited

www.darpa.mil

Brad Gaynor
Brad.Gaynor@STResearch.com

SDH: MITCHELL
B. Gaynor1, T. Giannakopoulos1, P. Ilardi1, R. Thompson1, D. Kaeli2, N. Agostini2, K. Shivdikar2, S. Jagannathan3, Z. Zhou3

1Systems & Technology Research, 2Northeastern University, 3Purdue University

BACKGROUND

APPROACH

IMPACT: Phase 1

CONTACT

Copyright 2019 Systems & Technology Research, LLC.
This research was developed with funding from the Air Force Research Laboratory (AFRL) and the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings
expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Hardware

Support Library native-libc

POSIX

Parallel Language Runtime

Task and data parallelism for
comprehensions, folds,

and primitives

Parallel Prims

STP MTP STP MTP

…
… …

MITCHELL Runtime

y = f(x: dense matrix)

x: dense matrix

...

Dense Kernel Variant

PHASE 1: Language-Managed Parallelism
• Task-parallelism via parallel execution of comprehensions and folds
• Data-parallelism via hardware-supported primitive operations on vectors, matrices, ...
• Libraries and abstractions to protect users from complexity
• Accomplishment: automated multi-threading for high-level programs on target hardware

PHASE 2: Data-Dependent Run-time Kernel Selection

PHASE 3: Safe Approximation
• Getting good answers fast is often better than calculating perfect answers too late
• Built-in compile-time static analysis and run-time instrumentation determine when it is safe to use approximate kernels
• Builds on Phase 2 automatic kernel selection mechanism to realize additional algorithm accelerations

• Whole-program compilation enables automatic instrumentation
based on annotated kernel choice-points in standard language libraries

• Data statistics collected and used to automatically select kernels and insert representation coercions at run-time

kernels
swapped

at run-time
based on
data from

instrumentation y = f(x': sparse matrix)

x: dense matrix

Sparse Kernel Variant

x' = sparse_of_dense(x)
coercion

...

B B

A A
f: A → B

Comprehensions

B B B

A A

f: B → A → B

Folds

2019-05-03

The MITCHELL programming language enables data scientists and
machine learning practitioners to write performant machine learning and
graph analytics programs that leverage highly-parallel hardware.

The MITCHELL compiler, runtime, and libraries provide language-
managed parallelism, data-dependent run-time kernel selection, and
safe approximation, thus enabling developers to specify algorithms
easily while achieving high performance.

• No data dependency
• Minimal synchronization

• Loop carry dependency
• Tiling analysis Multiple Integrated Threading Models

See Mitchell Runtime diagram to far left

• Comprehensions and folds provide task-parallelism
• Run on single-threaded pipelines (STPs)

• Primitive operations provide data-parallelism
• Run on multi-threaded pipelines (MTPs)

Efficient Primitive Operations
• Specialized to SDH

hardware
• Libraries for matrices,

vectors, graphs,
decision trees, ...

High-Level Programming Targets Bare-Metal Hardware
With Massive Parallelism
• Parallelism without explicit concurrency

• Programmers take advantage of parallel hardware without
explicit thread and synchronization management

• Hardware support for performant language primitives

Automatic Parallelization And Optimization

BLAS & GSL Primitives With Hardware Support

Compiler
Runtime

Libraries

Calculating the Update for Gradient-Boosted Decision Trees

fun ca lcu la t e Up d a t e gb d t d a t a le a rn ingRa t e =
le t

fun los s (fe a t u re s , la b e l) = los s R gb d t (fe a t u re s , la b e l)
va l d a t a Gra d ie n t = Lis t .m a p los s d a t a
va l d t = CART.t ra in d a t a Gra d ie n t
va l fa m ily = CART.p rune d t d a t a
va l a vg = a ve ra ge Of_i (fn (_, d t) => DT.le a fNum d t) fa m ily
fun com p le ft righ t = com p a re Le a ve s a vg le ft righ t
va l b e s t = a rgm a x com p fa m ily
va l d t = ca s e b e s t of NONE => d t | SOME (_, x) => x

in
a p p lyLe a rn ingRa t e d t le a rn ingRa t e

e nd

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

⇉

⇆

⇆

⇉ Parallel Comprehension , ⇆ Parallel Fold , Parallel Primitive

BLAS
Level Function Description

Sp e c ia lize d Func t ions : Soft w a re De fine d Ha rd w a re (SDH)

