l~ — >
.3‘5+ " .

I ,
\ @L**?’Purd e Universit

— o PN YK - |
B. Ggynor1 T. Glannakqaoﬁlos;mlardll R,Tho ﬂ Bna K@eliz, N. Agostini<,

1Systems & Technology Research, 2Northeastern |

Speclalized Functions: Software Defined Hardware (SDH)

Fr

L Y
. Sh}*\/d’ikarz, S. Jagannathan3, Z. Zhou3
;

IMPACT: Phase 1

BACKGROUND

The MITCHELL programming language enables data scientists and
machine learning practitioners to write performant machine learning and
graph analytics programs that leverage highly-parallel hardware.

Runtlme

Libraries

The MITCHELL compiler, runtime, and libraries provide language-
managed parallelism, data-dependent run-time kernel selection, and
safe approximation, thus enabling developers to specify algorithms
easily while achieving high performance.

Compiler

Automatic Parallellzatlon And Optimization

APPROACH

PHASE 1. Language-Managed Parallelism
MITCHELL Runtime e Task-parallelism via parallel execution of comprehensions and folds
| o Data-parallelism via hardware-supported primitive operations on vectors, matrices, ...
M » Libraries and abstractions to protect users from complexity
E _ } E } « Accomplishment: automated multi-threading for high-level programs on target hardware
Comprehensions Folds

 No data dependency
Al A » Minimal synchronization AlA

: f:B—-A—>B
Task and data parallelism for * Tiling analysis I B L L L L L
comprehensions, folds,
_______andprimitives w PHASE 2: Data-Dependent Run-time Kernel Selection
ke el ey il _ _
X: dense matrix X: dense matrix
5 kernelsd coercion \
— f(x" ' LY swappe T g
y = f(X: dense matrix) T atruntime | X' = sparse_ of dense(x) |-
~ Dense Kernel Variant data from | o .
instrumentation| | Yy = f(X": sparse matrix)
« Whole-program compilation enables automatic instrumentation ~ Sparse Kernel Variant

based on annotated kernel choice-points in standard language libraries
e Data statistics collected and used to automatically select kernels and insert representation coercions at run-time

PHASE 3: Safe Approximation

o Getting good answers fast is often better than calculating perfect answers too late
 Built-in compile-time static analysis and run-time instrumentation determine when it is safe to use approximate kernels
e Builds on Phase 2 automatic kernel selection mechanism to realize additional algorithm accelerations

Copyright 2019 Systems & Technology Research, LLC.
This research was developed with funding from the Air Force Research Laboratory (AFRL) and the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings
expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Distribution Statement A — Approved for Public Release, Distribution Unlimited

High-Level Programming Targets Bare-Metal Hardware
With Massive Parallelism

o Parallelism without explicit concurrency
 Programmers take advantage of parallel hardware without
explicit thread and synchronization management

 Hardware support for performant language primitives

= Parallel Comprehension , S Parallel Fold , E: Parallel Primitive

1. fun calculateUpdate gbdt data learningRate =

2. let

3. fun loss (features, label) = lossR gbhdt (features, label)
4. =3 val dataGradient = List.map loss data

5. = val dt = CART.train dataGradient

6. = val family = CART.prune dt data

7. S valavg =averageOf i (fn (_, dt) => DT.leafNum dt) family
8. fun comp left right = comparelLeaves avg left right

9. & val best =argmax comp family

10. val dt = case best of NONE => dt | SOME (_, xX) => X

11. In

12. applyLearningRate dt learningRate

13. end

Multiple Integrated Threading Models
See Mitchell Runtime diagram to far left

 Comprehensions and folds provide task-parallelism
* Run on single-threaded pipelines (STPs)

* Primitive operations provide data-parallelism
 Run on multi-threaded pipelines (MTPS)

Efficient Primitive Operations

+ Specialized to SOH |

hardware void cblas_<>scal Multiply array by scalar
void cblas_<>copy Copy array to array

void cblas_<>axpy Add arrays element-wise

1

1

. i] 1

* lerarles for matrlces, 1 <> cblas_<>dot Array dot product

VectorS, graphs’ ; float cblas_sdsdot Array dot product plus constant
2

void cblas_<>gemvGeneric matrix-vector multiplication
void cblas_<>spmvSparse matrix-vector multiplication

decision trees, ...

BLAS & GSL Primitives With Hardware Support

CONTACT

SYSTEMS

Brad Gaynor STECHNOLOGY
Brad.Gaynor@STResearch.com RESEARCH

