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Memristive Crossbar Arrays for Brain-Inspired Computing

We design, fabricate, and integrate large memristive crossbar arrays as deep neural network accelerators and spiking neural networks.
This yields orders of magnitude improvements in computing speed-energy efficiency.

• Experiments working on materials/devices, fabrication/integration and circuits/systems
• Main focus is emerging hardware for machine intelligence and neuromorphic computing
• Exploring new frontiers in hardware security, 5G and sensing

Largest analog memristor crossbar array to accelerate deep learningOverview of our program

• 1T1R architecture enables precise conductance tuning, linear and symmetric 
weight updating, reduces variability and avoids sneak path problem

• One step in-memory vector matrix multiplication through Ohm’s law and 
Kirchhoff’s current law, leading to high throughput and energy efficiency  

• High yield (99.8%) post processing by integrating Ta/HfO2 memristors with foundry 
made transistor arrays

• Potential to interface with analog signal to further increase energy efficiency

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Building blocks: drift and diffusive memristors
• Ta/HfO2 device offers multilevel (>64) & stable resistance states, analog 

resistance tuning, high endurance (120 billion cycles), fast speed, & IV linearity
• Demonstrated 2 nm scalability, 8 layer stackability, and CMOS compatibility

• Diffusive memristor offers diffusive dynamics (relaxation & delay) that enable faithful 
emulation of biological synapses and neurons

• 1 diffusive memristor + 1 drift memristor = 1 synapse; 1 diffusive memristor = 1 neuron

Scientific Reports 6, 28525 (2016). US patent: 10186660. 

Nature Materials 16, 101-108 (2017). Nature Electronics 1,137-145 (2018).

Nature Electronics 1,137-145 (2018).

Analog computing & machine learning demonstrations

 Multilayer Neural Network for in-situ Online Training

 Image Compression with a 128x64 1T1R array 

 Reinforcement Learning Long Short-Term Memory (LSTM)
Nature Communications 9, 2385 (2018).

Nature Electronics 1, 52-59 (2018).

Nature Machine Intelligence 1, 49-57 (2019). Nature Electronics 2, 115-124 (2019).

Fully memristive neural network

• Ta/HfO2 drift memristors as synapses, Ag:SiOx drift memristors as neurons
• Unsupervised learning enabled by interaction between the synapses and neurons

Nature Electronics 1, 52-59 (2018).
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Analog conductance as synaptic weight in a NN

Background

• The solution: In-memory analog computing and neuromorphic computing with 
emerging devices and arrays for much enhanced speed-energy efficiency 

Xu et al, Nature Electron. 1, 216 ( 2018).

• New challenges: Device engineering and array integration for emerging hardware

• The problem: Pure CMOS based AI hardware reaches a performance plateau

Xia & Yang, Nature Materials 18, 309 (2019). 
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