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Hyper-Dimensional (HD) Data Enabled Neural Networks (HyDDENN)

Robust HD Encoding & Decoding

Results: HD Classification & Clustering

Accuracy of HD versus other ML Techniques with BER

Applications of HD Computing
HD-based RF Signal Classification

HD Application to Matched Filtering (by NGMS)

• Goal: classify the modulation used by nearby transmitters
• Datasets created with dynamic GNU radio channel model 

using AWGN, random walk process to simulate carrier 
frequency drift & sample rate offset drive, Rayleigh fading

HD has three orders of magnitude better margin as 
the information is spread across larger dimensionality

Goal:  Enhance matched 
filtering with HD to reduce 
the overall error

HD classification has comparable accuracy vs. conventional 
machine learning but is more computationally efficient 

Why HD Computing?
Conventional machine learning (ML) approaches are not 
well suited to edge computing

• Model training is energy intensive, high-latency, requires 
complex optimization algorithms and is not robust to noise

Hyperdimensional (HD) computing uses high dimensional 
data representation, called hypervectors of ~10k bits, to 
address these issues:

• Inherent noise robustness due to large dimensionality
• e.g. HD computing shows no change in classification 

accuracy even with 50% bits corrupted
• Supports real-time learning and reasoning; interpretable

• Training can be done in just a single pass & can be 
done in distributed fashion on edge devices

• Simple operations (+, XOR, *, nearest search) that are 
easy to accelerate in HW due to high-parallelism

HD Encoding maps data 𝒙𝒙 ∈ ℝ𝑛𝑛 to hypervector 𝜙𝜙 𝒙𝒙 ∈ ℤ𝑑𝑑≫𝑛𝑛
• Position ID Encoding 

• Quantizes 𝑥𝑥 into 𝑚𝑚 bins and encodes as a sequence 
• Preserves L1 distances up to additive distortion
• Increases distances between clusters: robust to noise!

• Random Projection Encoding
• Project data onto 𝑑𝑑 random directions in ℝ𝑛𝑛 & quantize
• Preserves Euclidean distances up to additive distortion
• Encodings are sparse - only 𝑘𝑘 ≪ 𝑑𝑑 bits matter

HD decoding 
• Returns original data when hypervector dimensionality O( N logM ), 

where data consists of N symbols drawn from alphabet of size M

HD Computing has applications to many areas in edge 
sensing and learning – from supervised classification 
and clustering that have large noise resilience, to 
applications in defense RF and secure edge computing.

Next steps are to manufacture HD PIM accelerator HW, 
design tools needed to map code onto the HD PIM and 
integrate it & test with the rest of the system.

Project Goals and Metrics: 
Design & demonstrate Hyperdimensional  computing architecture 
that is as accurate but 100x more efficient than the state of the art

Technical Approach: 
– Theoretical analysis of HD capabilities, definition of data encoding & 

decoding primitives
– Design HD computing architecture for classification and clustering
– Design the initial HW implementation of HD architecture
– Evaluate accuracy, robustness & efficiency vs. state of the art for 

contextual edge sensing applications  & defense RF communications Secure Distributed HD Learning
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65 90 90 81 90 90

Dynamic
SNR 18dB

78 93 92 89 93 92

HD reduces error by 80% for Delay & Doppler Estimates 
as compared to the Matched Filter

SecureHD encoding is 146× faster and decoding is 6.8×
faster vs  homomorphic encryption [Microsoft SEAL]

• Datasets:
• UCI ML Repository: Iris, Isolet, UCIchar (activity recognition)  
• Cardio (medical), EMG (gesture recognition), Face (face recognition) 
• Fundamental Clustering Prob Suite: Hepta, Tetra, TwoDiamonds, Wingnut

• Measurements done on:
– CPU: Intel i7-8700K with 16GB RAM
– GPU: Nvidia GTX 1080 Ti with 11GB VRAM
– FPGA: Kintex-7 (KC705)
– PIM: Processing-In-Memory, only simulated

• Simulations on 45 nm technology node in Cadence Virtuoso
• VTEAM ReRAM model: Ron/Roff = 10k/10MΩ, SET/RESET = 1.1ns
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