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Artificial Intelligence
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Background Results and ImpactApproach
AI in Edge Devices

 Edge AI is highly desirable due to lower latency and improved
privacy and security

 Edge AI should support a variety of applications under tight, often
time-varying, energy constraints

 Memory Bottleneck: Currently, large AI models incur high memory
access energy and latency costs

Stochastic Computing (SC)
 Numbers represented as average of random binary streams
 Compact multiply-and-accumulate (MAC) units enable massive

parallelization
 Longer streams improve compute accuracy

 SC is perfect for edge AI
 Faster, smaller, and more energy efficient
 Enables runtime adaptation of energy, latency, and accuracy
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Improving the Accuracy of SC Inference
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 How to deliver high AI inference accuracy without sacrificing the
parallelization benefits of SC ?

 How to maintain scalability/programmability without sacrificing
energy efficiency ?

 How to scale memory bandwidth to match SC’s compute
parallelism? Conventional memory is not dense enough.

 SC-aware AI training accounts for SC induced errors completely
closes the SC-fixed point accuracy gap

 Complemented by controlled stream randomness, hybrid SC-
fixed point addition and other techniques

Scalable, Programable SC Architecture

Achieved accuracy comparable to 8-bit fixed-point
 Shown for Street View House Number (SVHN) dataset
 SC-aware training improves accuracy by up to 48%
 Arithmetic optimizations further improve accuracy by 16%

Design Variant Accuracy a GOPS TOPS/W Area [mm2]

Accuracy-plus 89.0%-91.0% 150-600 15-59 0.2

EDP-plus 89.0%-91.0% 600-2400 19-76 0.4

VC-MTJ based 89.0%-91.0% 600-2400 21-81 0.2

Prior Artb 90.3% 188.8 8.2 1.4

 Compared to 8b fixed-point on SVHN dataset, improvements are:
 2.9X (energy), 7.4X (latency), 4.3X (area), +2.2% (accuracy)
 120X energy-delay product (EDP) (22X iso-accuracy)
 More expected with VC-MTJ based on-chip storage
 Multiple performance-accuracy points supported on the same 

hardware
 CMOS 14nm prototypes currently in the foundry
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Challenges

Accuracy Improvements

Performance Improvements

a Based on SVHN classification, prior art assumes 8b precision.
b A. Biswas and A. P. Chandrakasan, "Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power 
CNN-based machine learning applications," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 
2018, pp. 488-490, doi: 10.1109/ISSCC.2018.8310397; scaled to 14LPP, 1-bit weights. Estimated accuracy.
c Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks." IEEE journal of 
solid-state circuits vol 52 issue 1; scaled to 14LPP, 8-bit
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SVHN SC Accuracy optimizations
30% lower energy
16X lower latency

Coupling SC with Magneto-Electric RAM
 Voltage controlled magnetic tunneling junction (VC-MTJ) based 

memory as cheap, high density, non-volatile, on-chip storage
 5x smaller and 3x less energy than other on-chip memories

 End of project goal: full integration of SC and VC-MTJ based on-
chip storage
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 Fully digital, programmable architecture (with an instruction set)
 Massive compute parallelization: 
 MAC/mm2: ~96k (SC) vs ~0.5k (fixed-point)

 Computation skipping based stochastic pooling to save 4X-9X 
energy/latency with no accuracy loss

 Run-time programmable accuracy vs energy/latency
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