
This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Distribution Statement A – Approved for Public Release, Distribution Unlimited

Artificial Intelligence

Princeton SDH DECADES Architecture
David Wentzlaff, Princeton University; Margaret Martonosi, Princeton University;
Luca Carloni, Columbia University

Software Defined Hardware (SDH)
Background Results and ImpactApproach

Target Challenge: Data Supply is the Fundamental
Bottleneck in Accelerator-Rich Computing Systems
• Hardware accelerators make data supply bottlenecks dominate runtime
• Key bottlenecks lie in supplying specialized accelerators with data
• Different accelerators and applications have different data supply needs
• Accelerators lack general-purpose latency-tolerance mechanisms
• Accelerator-rich computing requires big increases in memory bandwidth
• Targets machine learning and complex graph applications

DECADES is a Vertically-Integrated Software/Hardware
approach that combines Language and Compiler support
to map complex graph and Machine Learning
applications to a novel, heterogeneous, accelerator-rich
manycore architectures.

DECADES Key Innovations:
• Intelligent Storage tiles orchestrate on-chip data movement between

accelerators and accelerators, accelerators and core, and core to core
• Best-of-breed pluggable accelerator socket and High-Level Synthesis

flow ease accelerator integration (ESP and ESP4ML)
• Rich compiler (DEC++) and language infrastructure automatically slices

applications and maps graph applications onto accelerators and cores
• DECADES architecture contains both near memory and in-memory

computation to reduce energy of data movement (ComputeDRAM)
• Strong commitment to open source release of software and hardware

DEC++C/++
Source C/++ Source to

Source adds
Parallelism

Lower to
LLVM IR

LLVM
Passes

Link and
Make

Executable

Executable
(x86, MosaicSim,

RISC-V) with
accelerator support

Lower to
Object Code

MosaicSim
Memory Trace

Decades
Libraries

Shared
Memory

Decoupling

Decoupled
Access/Execute

Graph
Application
Decoupling

MAPLE
Decoupling

Accelerator Invocations

DECADES DEC++ Compiler and Accelerator Invocation Flow

DECADES Architectural Overview

Transition Paths: Open-Source Release Contributions
MosaicSim: A cycle-driven, LLVM-based simulator for heterogeneous systems
• https://github.com/PrincetonUniversity/MosaicSim
DEC++: LLVM-based compiler and runtime; supports C/++, and Python
• https://github.com/PrincetonUniversity/DecadesCompiler
MosaicSim and DEC++ Support: Docker/Documentation/Tutorial
• https://hub.docker.com/repository/docker/princetondecades/decades
• https://github.com/amanocha/DECADES_Applications
OpenPiton: General purpose, multithreaded manycore RISC-V processor
• https://github.com/PrincetonUniversity/openpiton
ESP: Open-source research platform for heterogeneous SoC design
• https://github.com/sld-columbia/esp

DECADES Testchip 1
• Enables testing hardware and

software innovation
• Over 100 tiles
• Core Tiles (cache coherent)

• RISC-V 64-bit Ariane
• Intelligent Storage Tiles

• Programmatically controlled
data movement and storage

• Accelerator Tiles
• Specialized hardware

• Over 1B transistors
• 1.5GHz target frequency

for node in frontier:
val = process_node(node)
for neib in G.neighbors(node):
update = update_neib(node_vals, val, neib)
if(add_to_frontier(update)):
new_frontier.push(neib)

Iterative, frontier-based graph application template

GraphAttack! Program ExecutionWarm-up period

GraphAttack!: HW/SW co-design to hide long latencies of indirect
Neighbor Memory Accesses (NMAs) that bottleneck graph applications
• DEC++ Producer/Consumer program slicing where Producer issues

NMAs and Consumer performs computation with their data
• Intelligent Storage Tile asynchronously performs NMAs

• Producer issues memory request; data provided to Consumer
NMAs are pointer indirect and
therefore have long latencies

Speedup comparison of push-based vertex centric graph applications (BFS, SSSP, and PR), Graph Projections, and Sparse-
Dense Hadamard Product across different input datasets. With two in-order cores, GraphAttack! achieves up to a 4.68x
speedup (geomean 2.48x) over traditional do-all parallelism and can outperform an in-order core with a perfect cache.

4.68x

Neighbor Memory
Accesses (NMAs) are
issued asynchronously
after warm-up period

ESP4ML Case Study
Two multi-accelerator
SoC prototypes on
FPGA with multiple
accelerators
• Night-vision
• Image classifier
• Denoiser

Autoencoder

0.1

1

10

100

1NV+1Cl 4NV+1Cl 4NV+4Cl

Fr
am

es
 /

Jo
ul

e
(n

or
m

al
ize

d)

Night-Vision and Classifier

memory p2p

i7 8700k

Jetson TX1

Energy efficiency: 100x
gain vs. Jetson and i7

0
1
2
3
4
5

Cl split in
5

1NV+1Cl 2NV+2Cl 4NV+4Cl

Fr
am

es
 /

se
c

(n
or

m
al

ize
d)

memory p2p

Performance: 4.5x gain
with p2p & parallelization

So
C

s

A
pp

lic
at

io
ns

0%

20%

40%

60%

80%

100%

Multi-tile
classifier

Nightvision
+ classifier

Denoiser
+ classifier

DR
AM

 a
cc

es
se

s
(n

or
m

al
ize

d)

memory p2p

Memory accesses: 3x
decrease due to p2p

ESP4ML (AI accelerator portion of DECADES)
An Open Source Design Flow for Embedded AI Applications
Simplify design and programmability of heterogeneous SoCs for AI
• Generate accelerators

from machine learning
models given in Keras,
Pytorch, ONNX

• Automate accelerator
integration in the SoC

• Seamless accelerator
programmability from
target applications

ESP4ML Innovations

1) Accelerator Chaining
• Avoid memory roundtrips
• Fine-grained accelerators

synchronization

kernel
mode ESP accelerator driver

user
mode ESP Library

Application

// ESP accelerators replace
// software kernels 2 and 4
{

int *buffer = esp_alloc(size);
for (...) {
kernel_1(buffer,...);

// cfg_k2 has the accelerator
// configuration parameters

esp_run(buffer, cfg_k2);
kernel_3(buffer,...);
esp_run(buffer, cfg_k4);

}
esp_free(buffer);

}

2) Accelerator invocation API
A 3-functions API for accelerator
invocation from user applications
• Automatically generated

Linux device drivers
• No data copies needed at

accelerator-invocation time

Artistic Concept

Artistic Concept

Artistic Concept

Artistic Concept

Artistic Concept

Artistic Concept

Artistic Concept

Artistic Concept

https://github.com/PrincetonUniversity/MosaicSim
https://github.com/PrincetonUniversity/DecadesCompiler
https://hub.docker.com/repository/docker/princetondecades/decades
https://github.com/amanocha/DECADES_Applications
https://github.com/PrincetonUniversity/openpiton
https://github.com/sld-columbia/esp

	Slide Number 1

