
This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Distribution Statement A – Approved for Public Release, Distribution Unlimited.

Security and Access

CHERI: Capability Hardware Enhanced RISC Instructions
Dr Peter G. Neumann (SRI International), Dr Robert N. M. Watson (University of Cambridge),
Prof. Simon W. Moore (University of Cambridge), and Hugo Vincent (Arm)

SSITH: Software Security in the Hardware

Background Results and ImpactTechnical Approach
Problem
• From 2006-2019, ~70% of patched security vulnerabilities in

Microsoft software were C/C++-language memory-safety
vulnerabilities. Similar rates exist in other stacks (e.g., Android).

• These vulnerabilities directly enable confidential data extraction,
unauthorized data modification, and arbitrary code execution.

• There are no viable solutions today due to concerns over
adoption cost, software compatibility, and performance.

Approach
CHERI (Capability Hardware Enhanced RISC Instructions) extends
existing computer Instruction-Set Architectures (ISAs) with support for
a new hardware data type architectural capabilities. Capabilities are
used by the C/C++-language compiler/toolchain, operating system,
and applications to enable:

• High-performance fine-grained memory protection. Exploited
memory-safety vulnerabilities, such as buffer overflows, and exploit
techniques, such as Return-Oriented Programming (ROP) throw
exceptions rather than leaking or corrupting data, or enabling code
execution, with modest performance overhead (typically <5%).

• Scalable software compartmentalization. Whereas today, a
system may only support a dozen concurrent sandboxes to
constrain untrustworthy code, CHERI systems scale 1-2 orders of
magnitude better, enabling greater compartmentalization
granularity. For example, rather than sandboxing each website,
CHERI can sandbox at the granularity of every image on a page.

CHERI transition activities
First developed in the DARPA I2O CRASH program (2010), CHERI
addressed ~30% of exploited vulnerabilities. DARPA MTO SSITH has
extended CHERI to mitigate 70% of patched vulnerabilities, as well
as evaluated and optimized security, performance, and compatibility.
There are three significant in-progress technology transition efforts:

• Since 2015, in collaboration with Arm, SRI and Cambridge have
been working to transition CHERI to Arm’s 64-bit ARMv8-A ISA.
Arm’s first experimental CHERI-based System-on-Chip (SoC),
Morello, a 7nm multi-core design, will ship in late 2021 following
funding from DARPA I2O, ATO, and MTO, and, announced in 2019,
additional support of $236M (£187M) by Arm, Microsoft, Google,
and Amazon, and the UK government.

• Since 2017, Arm has adapted the ARMv8-M to support the CHERI
protection model. (See separate poster and demonstration.)

• Since 2017, SRI and Cambridge have implemented a full open-
source RISC-V-based reference architecture, multiple example
CPU cores validated on FPGA, and complete open-source software
stack for demonstration, evaluation, and transition to custom ASICs.

Research and development approach
CHERI provides architectural mitigation for C/C++ TCB vulnerabilities:

• Tagged memory, new hardware capability data type protect the
integrity, provenance validity, and target data of each pointer

• The CHERI model hybridizes cleanly with contemporary RISC
ISAs, CPUs, MMU-based OSes, and C/C++-language software

• Incremental software deployment of CHERI protection features:
recompile existing code with few or no source-level changes

CHERI was developed through iterative hardware-software-semantics
co-design, prototyping, evaluation, and refinement over 10 years:

• CHERI abstract protection model; concrete ISA instantiations in 64-
bit MIPS, 32/64-bit RISC-V, 64-bit ARMv8-A, 32-bit ARMv8-M

• Formal ISA models, Qemu-CHERI, and multiple FPGA prototypes
• Formal proofs that security properties are met, automatic testing
• Complete open-source software stack: CHERI Clang/LLVM/LLD,

GDB, CheriBSD, CheriFreeRTOS, C/C++ applications

CHERI architectural capabilities

CHERI extends pointer values with:
• Tags protect capabilities in registers and memory

• Dereferencing an untagged capability throws an exception
• In-memory overwrite automatically clears capability tag

• Bounds limit range of address space accessible via pointer
• Compressed 64-bit lower and upper bounds with greater

precision for smaller allocations
• Larger allocations have stronger alignment requirements
• Out-of-bounds pointer support for C-language compatibility

• Permissions limit operations – e.g., load, store, fetch
• Sealing: immutable, non-dereferenceable capabilities – used for

non-monotonic transitions

Example microarchitecture: CHERI-Piccolo Microcontroller

merged integer &
capability registers

= tag storage

L1 I-cache

DRAM controller Tag Controller

off-chip DRAM

capability arithmetic

capability load/store

capability exceptions

new registers:
PCC, DDC, CSRs

CHERI-Piccolo
core

Changes to the Piccolo core (RISC-V 3-stage pipeline):
• capability arithmetic
• capability load/store operations with bounds checking
• extended exception model
• PC becomes a capability (PCC)
• default data capability (DDC)
• new control/status registers
• merged integer & capability register file
Memory subsystem:
• AXI user-field added to transport tag bits+data; 2x width
• caches extended to include tags
DRAM changes:
• Tag controller guarantees integrity + coherence of tags
• Incorporates a hierarchical tag cache to efficiently store

tag bits backed by top of DRAM

L1 D-cache

CHERI software protection and compatibility
• Capabilities are refined by the kernel, run-time linker, compiler-generated

code, heap and stack allocators, …
• Protection mechanisms:

• Referential memory safety
• Spatial memory safety + privilege minimization
• Temporal memory safety

• Applied automatically at two levels:
• Language-level pointers point explicitly at stack and heap

allocations, global variables, …
• Sub-language pointers implement control flow, linkage, etc.

• Sub-language protection mitigates bugs in the language runtime and
generated code, as well as attacks that cannot be mitigated by higher-
level memory safety
• (e.g., union type confusion)

CHERI-RISC-V early evaluation across multiple FPGA-based cores
• Prototyped for three CPUs Median cycles overhead (MiBench)

3-stage pipeline (P1) 20% (pre-optimization)
5-stage pipeline (P2) 9% (pre-optimization)
Superscalar core (P3) <1% (pre-optimization)

• CWE-based security evaluation (by vulnerability class)
100% of buffer-related errors
75% of resource management errors
35% of numeric errors

• Vendor security analysis (estimates based on vendor information)
>70% of Microsoft 2019 patched security vulnerabilities mitigated
Comparable portion of Android/Chrome vulnerabilities mitigated
100% of Apple iOS GP0 2019 zero-day vulnerabilities mitigated

• Early compartmentalization evaluation shows a 90%+ reduction in IPC
overhead to sandbox applications using multiple UNIX processes

If adopted, CHERI will eliminate a majority of known and potential
future security vulnerabilities while maintaining industrially viable
performance and software ecosystem compatibility.

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

12
8-

bi
t

ca
pa

bi
lit

y

Allocation

Virtual
address
space

v1-
bi

t
ta

g

Permissions Bounds compressed
relative to addressotype

Address (64 bits)

Language-level memory safety
Pointers to heap

allocations
Pointers to stack

allocations

Pointers to global
variables

Pointers to TLS variables

Function pointers
Pointers to memory

mappings
Pointers to sub-objects

Sub-language memory safety

GOT pointers
Return addresses

PLT entry pointers

ELF aux arg pointersStack
pointers

C++ v-table
pointers

Vararg array pointers

All illustrations are authors’ own.

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

	Slide Number 1

