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Background Results and ImpactTechnical Approach
Problem
• From 2006-2019, ~70% of patched security vulnerabilities in 

Microsoft software were C/C++-language memory-safety 
vulnerabilities. Similar rates exist in other stacks (e.g., Android). 

• These vulnerabilities directly enable confidential data extraction, 
unauthorized data modification, and arbitrary code execution. 

• There are no viable solutions today due to concerns over 
adoption cost, software compatibility, and performance.

Approach
CHERI (Capability Hardware Enhanced RISC Instructions) extends 
existing computer Instruction-Set Architectures (ISAs) with support for 
a new hardware data type architectural capabilities. Capabilities are 
used by the C/C++-language compiler/toolchain, operating system, 
and applications to enable:

• High-performance fine-grained memory protection. Exploited 
memory-safety vulnerabilities, such as buffer overflows, and exploit 
techniques, such as Return-Oriented Programming (ROP) throw 
exceptions rather than leaking or corrupting data, or enabling code 
execution, with modest performance overhead (typically <5%).

• Scalable software compartmentalization. Whereas today, a 
system may only support a dozen concurrent sandboxes to 
constrain untrustworthy code, CHERI systems scale 1-2 orders of 
magnitude better, enabling greater compartmentalization 
granularity. For example, rather than sandboxing each website, 
CHERI can sandbox at the granularity of every image on a page.

CHERI transition activities
First developed in the DARPA I2O CRASH program (2010), CHERI 
addressed ~30% of exploited vulnerabilities. DARPA MTO SSITH has 
extended CHERI to mitigate 70% of patched vulnerabilities, as well 
as evaluated and optimized security, performance, and compatibility. 
There are three significant in-progress technology transition efforts:

• Since 2015, in collaboration with Arm, SRI and Cambridge have 
been working to transition CHERI to Arm’s 64-bit ARMv8-A ISA. 
Arm’s first experimental CHERI-based System-on-Chip (SoC), 
Morello, a 7nm multi-core design, will ship in late 2021 following 
funding from DARPA I2O, ATO, and MTO, and, announced in 2019, 
additional support of $236M (£187M) by Arm, Microsoft, Google, 
and Amazon, and the UK government.

• Since 2017, Arm has adapted the ARMv8-M to support the CHERI 
protection model. (See separate poster and demonstration.)

• Since 2017, SRI and Cambridge have implemented a full open-
source RISC-V-based reference architecture, multiple example 
CPU cores validated on FPGA, and complete open-source software 
stack for demonstration, evaluation, and transition to custom ASICs.

Research and development approach
CHERI provides architectural mitigation for C/C++ TCB vulnerabilities:

• Tagged memory, new hardware capability data type protect the 
integrity, provenance validity, and target data of each pointer

• The CHERI model hybridizes cleanly with contemporary RISC 
ISAs, CPUs, MMU-based OSes, and C/C++-language software

• Incremental software deployment of CHERI protection features: 
recompile existing code with few or no source-level changes

CHERI was developed through iterative hardware-software-semantics 
co-design, prototyping, evaluation, and refinement over 10 years:

• CHERI abstract protection model; concrete ISA instantiations in 64-
bit MIPS, 32/64-bit RISC-V, 64-bit ARMv8-A, 32-bit ARMv8-M

• Formal ISA models, Qemu-CHERI, and multiple FPGA prototypes
• Formal proofs that security properties are met, automatic testing
• Complete open-source software stack: CHERI Clang/LLVM/LLD, 

GDB, CheriBSD, CheriFreeRTOS, C/C++ applications

CHERI architectural capabilities

CHERI extends pointer values with:
• Tags protect capabilities in registers and memory

• Dereferencing an untagged capability throws an exception
• In-memory overwrite automatically clears capability tag

• Bounds limit range of address space accessible via pointer
• Compressed 64-bit lower and upper bounds with greater

precision for smaller allocations
• Larger allocations have stronger alignment requirements
• Out-of-bounds pointer support for C-language compatibility

• Permissions limit operations – e.g., load, store, fetch
• Sealing: immutable, non-dereferenceable capabilities – used for 

non-monotonic transitions

Example microarchitecture: CHERI-Piccolo Microcontroller
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Changes to the Piccolo core (RISC-V 3-stage pipeline):
• capability arithmetic
• capability load/store operations with bounds checking
• extended exception model 
• PC becomes a capability (PCC)
• default data capability (DDC)
• new control/status registers
• merged integer & capability register file
Memory subsystem:
• AXI user-field added to transport tag bits+data; 2x width
• caches extended to include tags
DRAM changes:
• Tag controller guarantees integrity + coherence of tags
• Incorporates a hierarchical tag cache to efficiently store

tag bits backed by top of DRAM

L1 D-cache

CHERI software protection and compatibility
• Capabilities are refined by the kernel, run-time linker, compiler-generated 

code, heap and stack allocators, …
• Protection mechanisms:

• Referential memory safety
• Spatial memory safety + privilege minimization
• Temporal memory safety

• Applied automatically at two levels:
• Language-level pointers point explicitly at stack and heap 

allocations, global variables, …
• Sub-language pointers implement control flow, linkage, etc.

• Sub-language protection mitigates bugs in the language runtime and 
generated code, as well as attacks that cannot be mitigated by higher-
level memory safety
• (e.g., union type confusion)

CHERI-RISC-V early evaluation across multiple FPGA-based cores
• Prototyped for three CPUs         Median cycles overhead (MiBench)

3-stage pipeline (P1)            20% (pre-optimization) 
5-stage pipeline (P2)            9% (pre-optimization)
Superscalar core (P3)          <1% (pre-optimization)

• CWE-based security evaluation (by vulnerability class)
100% of buffer-related errors
75% of resource management errors
35% of numeric errors

• Vendor security analysis (estimates based on vendor information)
>70% of Microsoft 2019 patched security vulnerabilities mitigated
Comparable portion of Android/Chrome vulnerabilities mitigated
100% of Apple iOS GP0 2019 zero-day vulnerabilities mitigated

• Early compartmentalization evaluation shows a 90%+ reduction in IPC 
overhead to sandbox applications using multiple UNIX processes

If adopted, CHERI will eliminate a majority of known and potential 
future security vulnerabilities while maintaining industrially viable 
performance and software ecosystem compatibility.

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
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All illustrations are authors’ own.
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