

# NARESH SHANBHAG

### **UNIVERSITY OF ILLINOIS AT** URBANA-CHAMPAIGN



# MRAM-BASED DEEP IN-MEMORY ARCHITECTURES

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

## ΤΗΕ ΤΕΑΜ

**Princeton** 

University of Illinois at Urbana-Champaign

**Raytheon MS** 

**GLOBALFOUNDRIES** 

#### Mike Burkland Ajey Jacob Pavan Hanumolu Naveen Verma Naresh Shanbhag (UIUC) (UIUC) (Princeton) [DoD systems] [devices, foundry] [systems & ckts] [mixed-signal ICs] [systems & ckts] S. Soss, D. L.-Y. Chen J. Broussard A. Patil, H. Hua, S. Gonugondla, K.-H. Kim P. Deaville Brown L. Suantak N. Gaul, B. Paul, B. Zhang J. Goulding B. Lanza S. Cole T. Gangwer R. Kelley C. Contreras Distribution A. Approved for public release; distribution is unlimited

## **REALIZING ARTIFICIAL INTELLIGENCE @ THE EDGE**

## Al in the Cloud



[source: pexels.com]

- client-server model
- efficiency challenged
- security + privacy issues



# THE DATA MOVEMENT PROBLEM



## fundamental question

## how do we design **intelligent autonomous machines** that **operate at the limits** of **energy-delay-accuracy**?



### Systems on Nanoscale Information fabriCs

www.sonic-center.org

[2013-'17]



(STARnet Program by Semiconductor Research Corporation & DARPA)

# Shannon-Inspired Statistical Computing for the Nanoscale Era

By NARESH R. SHANBHAG<sup>(D)</sup>, *Fellow IEEE*, NAVEEN VERMA, *Member IEEE*, YONGJUNE KIM<sup>(D)</sup>, *Member IEEE*, AMEYA D. PATIL, *Student Member IEEE*, AND LAV R. VARSHNEY<sup>(D)</sup>, *Senior Member IEEE* 

Proceedings of IEEE, Special Issue on *non von Neumann Computing*, January 2019. Distribution A. Approved for public release; distribution is unlimited

## **SHANNON-INSPIRED MODEL OF COMPUTING**



1 use information-based metrics e.g., mutual information  $I(Y_o; \hat{Y})$ 

- 2 design low SNR fabrics, e.g., deep in-memory architecture (DIMA)
- 3 develop statistical error-compensation (SEC) techniques

## **FRANC OBJECTIVE**



## THE DEEP IN-MEMORY ARCHITECTURE (DIMA)



## **SRAM DIMA PROTOTYPES**

## **100X EDP reduction over von Neumann equivalent\*** @ iso-accuracy

\* 8b fixed-function digital architecture with identical SRAM size



Multi-functional inference processor (65nm CMOS) Random forest processor (65nm CMOS)





On-chip training processor (65nm CMOS) Fully (128) row-parallel compute (130nm CMOS)

[Feb. JSSC'18]

[ESSCIRC'17, JSSC July'18]

[ISSCC'18, JSSC Nov.'18]

[VLSI'16, JSSC'17]

## **MRAM OPPORTUNITIES & CHALLENGES**





#### **MTJ** resistance distribution



## **Opportunities:**

 $\begin{array}{l} \mbox{high density} \rightarrow \mbox{high on-chip compute density} \\ \mbox{non-volatility} \rightarrow \mbox{ultra low-power duty-cycled operation} \\ \mbox{in production} \rightarrow \mbox{enables system prototyping \&} \\ \mbox{reduces time to DoD availability} \end{array}$ 

### **Challenges:**

high conductance  $\rightarrow$  large array currents small TMR  $\rightarrow$  high sensitivity readout huge  $R_{MTJ} - R_{MOS}$  limits cell compute models high cell density  $\rightarrow$  severe pitch-matching const. high MTJ process variation restricts bit-line SNR

## **MRAM-BASED DEEP IN-MEMORY ARCHITECTURES**

### four DIMAs proposed – two selected for prototyping



- $M \times N$  single-shot matrix vector multiply
- Functional read: binary dot products on BLs
- Compute cell: 2T-2MTJ (1b XNOR/AND)
- BL voltage sensing via 4-bit SAR ADCs
- SNR vs. energy trade-off due to sensing circuits Distribution A. Approved for put

- $M \times N$  single-shot matrix vector multiply
- Functional read: 5-bit × 4-bit dot products on SLs
- Compute cell: 1T-1MTJ (4 × 1 multiplication)
- SL current sensing via time-based 5-bit ADCs
- e to sensing circuits SNR vs. energy trade-off due to sensing circuits Distribution A. Approved for public release; distribution is unlimited

## **EDP GAINS OVER VON NEUMANN EQUIVALENT**



## **SHANNON-INSPIRED COMPUTE MODELS**



- relaxes MRAM-based DIMA's compute SNR requirements → enables substantial energy savings
- two methods: stochastic data-driven hardware resilience & coded DIMA

## **STOCHASTIC DATA-DRIVEN HARDWARE RESILIENCE**



## **CODED DIMA - ENHANCING DIMA'S COMPUTE SNR**

#### MTJ variation aware coding enables HIGH system SNR in spite of LOW circuit SNR



Distribution A. Approved for public release; distribution is unlimited

## **CURRENT STATUS**

- verified & quantified RMS's mission capability enabled by MRAM-based DIMA
- MRAM-based DIMA demonstrates > 2 orders-of-magnitude EDP reduction

**DIMA prototype designs taped out** 



| MRAM-DIMA              |  |
|------------------------|--|
|                        |  |
| circuit_char_blk (1x1) |  |
|                        |  |

- (2019) [single-bank] validate EDP gains & calibrate models
- (2020) [multi-bank] enable scaling and system integration

**Technology transition via SRAM-based DIMA** 



[H. Jia, arXiv:1811.04047, Princeton]

- DIMA technology transition to RMS for algorithm prototyping & evaluation
- facilitates future MRAM-based DIMA integration by RMS

# **NEXT STEPS & SUMMARY**

#### [Srivastava, et al., ISCA'18] decision A/D & RDL Cross BL processor (CBLP) Improvement 6T SRAM bit cel BLP BLP BLP I-DAC VBIAS,O X[1] Factor | WL Self-biasing Bit cell bit-cell Replica WL RESET upsized to drive WL capacitace Support Template K-Nearest Col. mux Matching Neighbour filtering NeighbourRegression Vector Neural 12 12 11 Network mux & buff Energy 4-Bank Throughput Energy *≰ K*-bus

#### **Multi-functioned DIMAs for Diverse Applications**

#### **Parameterized DIMAs for Platform-design Tools**

### Summary

**Mission:** To realize > 200X in EDP gains in DoD workloads by integrating **MRAM device** within **Deep In-memory Architectures** using **Shannon-inspired compute models** 

FRANC Program: "to provide the foundation for new materials technology and new integration approaches to be exploited in pursuit of novel compute architectures"

# ERI ELECTRONICS RESURGENCE INITIATIVE SUMMIT

2019 | Detroit, MI | July 15 - 17

